python中如何实现将数据分成训练集与测试集的方法

yipeiwu_com6年前Python基础

接下来,直接给出大家响应的代码,并对每一行进行标注,希望能够帮到大家。

需要用到的是库是。numpy 、sklearn。

#导入相应的库(对数据库进行切分需要用到的库是sklearn.model_selection 中的 train_test_split)
import numpy as np
from sklearn.model_selection import train_test_split
 #首先,读取.CSV文件成矩阵的形式。
my_matrix = np.loadtxt(open("xxxxxx.csv"),delimiter=",",skiprows=0)
 #对于矩阵而言,将矩阵倒数第一列之前的数值给了X(输入数据),将矩阵大最后一列的数值给了y(标签)
X, y = my_matrix[:,:-1],my_matrix[:,-1]
 #利用train_test_split方法,将X,y随机划分问,训练集(X_train),训练集标签(X_test),测试卷(y_train),
 测试集标签(y_test),安训练集:测试集=7:3的
 概率划分,到此步骤,可以直接对数据进行处理
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)
 #此步骤,是为了将训练集与数据集的数据分别保存为CSV文件
 #np.column_stack将两个矩阵进行组合连接
train= np.column_stack((X_train,y_train))
 #numpy.savetxt 将txt文件保存为。csv结尾的文件
numpy.savetxt('train_usual.csv',train, delimiter = ',')
test = np.column_stack((X_test, y_test))
numpy.savetxt('test_usual.csv', test, delimiter = ',')

完整没解释的代码部分为

import numpy as np
from sklearn.model_selection import train_test_split
my_matrix = np.loadtxt(open("xxxxx.csv"),delimiter=",",skiprows=0)
X, y = my_matrix[:,:-1],my_matrix[:,-1]
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)
train= np.column_stack((X_train,y_train))
numpy.savetxt('train_usual.csv',train, delimiter = ',')
test = np.column_stack((X_test, y_test))
numpy.savetxt('test_usual.csv', test, delimiter = ',')

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

如何利用Boost.Python实现Python C/C++混合编程详解

前言 学习中如果碰到问题,参考官网例子: D:\boost_1_61_0\libs\python\test 参考:Boost.Python 中英文文档。 利用Boost.Python...

Python自定义类的数组排序实现代码

首先把实现方法写出来,其实很简单,只需要一句代码即可: 复制代码 代码如下: productlist.sort(lambda p1, p2:cmp(p1.getPrice(), p2.g...

详解python数据结构和算法

详解python数据结构和算法

1.删除序列相同元素并保持顺序 如果仅仅就是想消除重复元素,通常可以简单的构造一个集合,利用集合之间元素互不相同的特性就可以消除重复,但是这种方法生成的结果中元素的位置会被打乱。下面是我...

TensorFlow 模型载入方法汇总(小结)

TensorFlow 模型载入方法汇总(小结)

一、TensorFlow常规模型加载方法 保存模型 tf.train.Saver()类,.save(sess, ckpt文件目录)方法 参数名称...

tensorflow 变长序列存储实例

问题 问题是这样的,要把一个数组存到tfrecord中,然后读取 a = np.array([[0, 54, 91, 153, 177,1], [0, 50, 89, 147,...