Python实现语音识别和语音合成功能

yipeiwu_com5年前Python基础

声音的本质是震动,震动的本质是位移关于时间的函数,波形文件(.wav)中记录了不同采样时刻的位移。

通过傅里叶变换,可以将时间域的声音函数分解为一系列不同频率的正弦函数的叠加,通过频率谱线的特殊分布,建立音频内容和文本的对应关系,以此作为模型训练的基础。

案例:画出语音信号的波形和频率分布,(freq.wav数据地址)

# -*- encoding:utf-8 -*-
import numpy as np
import numpy.fft as nf
import scipy.io.wavfile as wf
import matplotlib.pyplot as plt
sample_rate, sigs = wf.read('../machine_learning_date/freq.wav')
print(sample_rate)   # 8000采样率
print(sigs.shape)  # (3251,)
sigs = sigs / (2 ** 15) # 归一化
times = np.arange(len(sigs)) / sample_rate
freqs = nf.fftfreq(sigs.size, 1 / sample_rate)
ffts = nf.fft(sigs)
pows = np.abs(ffts)
plt.figure('Audio')
plt.subplot(121)
plt.title('Time Domain')
plt.xlabel('Time', fontsize=12)
plt.ylabel('Signal', fontsize=12)
plt.tick_params(labelsize=10)
plt.grid(linestyle=':')
plt.plot(times, sigs, c='dodgerblue', label='Signal')
plt.legend()
plt.subplot(122)
plt.title('Frequency Domain')
plt.xlabel('Frequency', fontsize=12)
plt.ylabel('Power', fontsize=12)
plt.tick_params(labelsize=10)
plt.grid(linestyle=':')
plt.plot(freqs[freqs >= 0], pows[freqs >= 0], c='orangered', label='Power')
plt.legend()
plt.tight_layout()
plt.show()

语音识别

梅尔频率倒谱系数(MFCC)通过与声音内容密切相关的13个特殊频率所对应的能量分布,可以使用梅尔频率倒谱系数矩阵作为语音识别的特征。基于隐马尔科夫模型进行模式识别,找到测试样本最匹配的声音模型,从而识别语音内容。

MFCC

梅尔频率倒谱系数相关API:

import scipy.io.wavfile as wf
import python_speech_features as sf
sample_rate, sigs = wf.read('../data/freq.wav')
mfcc = sf.mfcc(sigs, sample_rate)

案例:画出MFCC矩阵:

python -m pip install python_speech_features
import scipy.io.wavfile as wf
import python_speech_features as sf
import matplotlib.pyplot as mp
sample_rate, sigs = wf.read(
  '../ml_data/speeches/training/banana/banana01.wav')
mfcc = sf.mfcc(sigs, sample_rate)
mp.matshow(mfcc.T, cmap='gist_rainbow')
mp.show()

隐马尔科夫模型

隐马尔科夫模型相关API:

import hmmlearn.hmm as hl
model = hl.GaussianHMM(n_components=4, covariance_type='diag', n_iter=1000)
# n_components: 用几个高斯分布函数拟合样本数据
# covariance_type: 相关矩阵的辅对角线进行相关性比较
# n_iter: 最大迭代上限
model.fit(mfccs) # 使用模型匹配测试mfcc矩阵的分值 score = model.score(test_mfccs)

案例:训练training文件夹下的音频,对testing文件夹下的音频文件做分类

1、读取training文件夹中的训练音频样本,每个音频对应一个mfcc矩阵,每个mfcc都有一个类别(apple)。

2、把所有类别为apple的mfcc合并在一起,形成训练集。

  | mfcc |      |
  | mfcc | apple |
  | mfcc |      |
  .....
  由上述训练集样本可以训练一个用于匹配apple的HMM。

3、训练7个HMM分别对应每个水果类别。 保存在列表中。

4、读取testing文件夹中的测试样本,整理测试样本

  | mfcc | apple |
  | mfcc | lime   |

5、针对每一个测试样本:

  1、分别使用7个HMM模型,对测试样本计算score得分。

  2、取7个模型中得分最高的模型所属类别作为预测类别。

import os
import numpy as np
import scipy.io.wavfile as wf
import python_speech_features as sf
import hmmlearn.hmm as hl
​
#1. 读取training文件夹中的训练音频样本,每个音频对应一个mfcc矩阵,每个mfcc都有一个类别(apple)。
def search_file(directory):
  # 使传过来的directory匹配当前操作系统
  # {'apple':[url, url, url ... ], 'banana':[...]}  
  directory = os.path.normpath(directory)
  objects = {}
  # curdir:当前目录 
  # subdirs: 当前目录下的所有子目录
  # files: 当前目录下的所有文件名
  for curdir, subdirs, files in os.walk(directory):
    for file in files:
      if file.endswith('.wav'):
        label = curdir.split(os.path.sep)[-1]
        if label not in objects:
          objects[label] = []
        # 把路径添加到label对应的列表中
        path = os.path.join(curdir, file)
        objects[label].append(path)
  return objects
​
#读取训练集数据
train_samples = \
  search_file('../ml_data/speeches/training')
​
'''

2. 把所有类别为apple的mfcc合并在一起,形成训练集。

 | mfcc |    |
  | mfcc | apple |
  | mfcc |    |
  .....
  由上述训练集样本可以训练一个用于匹配apple的HMM。
'''
train_x, train_y = [], []
# 遍历7次 apple/banana/...
for label, filenames in train_samples.items():
  mfccs = np.array([])
  for filename in filenames:
    sample_rate, sigs = wf.read(filename)
    mfcc = sf.mfcc(sigs, sample_rate)
    if len(mfccs)==0:
      mfccs = mfcc
    else:
      mfccs = np.append(mfccs, mfcc, axis=0)
  train_x.append(mfccs)
  train_y.append(label)
'''
训练集:
  train_x train_y
  ----------------
  | mfcc |    |
  | mfcc | apple |
  | mfcc |    |
  ----------------
  | mfcc |    |
  | mfcc | banana |
  | mfcc |    |
  -----------------
  | mfcc |    |
  | mfcc | lime  |
  | mfcc |    |
  -----------------
'''
# {'apple':object, 'banana':object ...}
models = {}
for mfccs, label in zip(train_x, train_y):
  model = hl.GaussianHMM(n_components=4, 
    covariance_type='diag', n_iter=1000)
  models[label] = model.fit(mfccs)
'''

4. 读取testing文件夹中的测试样本,针对每一个测试样本:

   1. 分别使用7个HMM模型,对测试样本计算score得分。

   2. 取7个模型中得分最高的模型所属类别作为预测类别。

'''
#读取测试集数据
test_samples = \
  search_file('../ml_data/speeches/testing')
​
test_x, test_y = [], []
for label, filenames in test_samples.items():
  mfccs = np.array([])
  for filename in filenames:
    sample_rate, sigs = wf.read(filename)
    mfcc = sf.mfcc(sigs, sample_rate)
    if len(mfccs)==0:
      mfccs = mfcc
    else:
      mfccs = np.append(mfccs, mfcc, axis=0)
  test_x.append(mfccs)
  test_y.append(label)
​
'''测试集:
  test_x test_y
  -----------------
  | mfcc | apple |
  -----------------
  | mfcc | banana |
  -----------------
  | mfcc | lime  |
  -----------------
'''
pred_test_y = []
for mfccs in test_x:
# 判断mfccs与哪一个HMM模型更加匹配
best_score, best_label = None, None
for label, model in models.items():
score = model.score(mfccs)
if (best_score is None) or (best_score<score):
best_score = score
best_label = label
pred_test_y.append(best_label)
​
print(test_y)
print(pred_test_y)

声音合成

根据需求获取某个声音的模型频域数据,根据业务需要可以修改模型数据,逆向生成时域数据,完成声音的合成。

案例:

import json
import numpy as np
import scipy.io.wavfile as wf
with open('../data/12.json', 'r') as f:
  freqs = json.loads(f.read())
tones = [
  ('G5', 1.5),
  ('A5', 0.5),
  ('G5', 1.5),
  ('E5', 0.5),
  ('D5', 0.5),
  ('E5', 0.25),
  ('D5', 0.25),
  ('C5', 0.5),
  ('A4', 0.5),
  ('C5', 0.75)]
sample_rate = 44100
music = np.empty(shape=1)
for tone, duration in tones:
  times = np.linspace(0, duration, duration * sample_rate)
  sound = np.sin(2 * np.pi * freqs[tone] * times)
  music = np.append(music, sound)
music *= 2 ** 15
music = music.astype(np.int16)
wf.write('../data/music.wav', sample_rate, music)

总结

以上所述是小编给大家介绍的Python实现语音识别和语音合成功能,希望对大家有所帮助,如果大家有任何疑问请给我留言,小编会及时回复大家的。在此也非常感谢大家对【听图阁-专注于Python设计】网站的支持!
如果你觉得本文对你有帮助,欢迎转载,烦请注明出处,谢谢!

相关文章

pygame实现非图片按钮效果

pygame实现非图片按钮效果

本文实例为大家分享了pygame实现非图片按钮效果的具体代码,供大家参考,具体内容如下 按钮类程序 # -*- coding=utf-8 -*- import threading i...

Python中输出ASCII大文字、艺术字、字符字小技巧

Python中输出ASCII大文字、艺术字、字符字小技巧

复制代码 代码如下: display text in large ASCII art fonts 显示大ASCII艺术字体 这种东西在源码声明或者软件初始化控制台打印时候很有用。...

python实现求两个字符串的最长公共子串方法

python实现求两个字符串的最长公共子串方法

如下所示: # coding:utf-8 ''' 求两个字符串的最长公共子串 思想:建立一个二维数组,保存连续位相同与否的状态 ''' def getNumofCommonSub...

python GUI图形化编程wxpython的使用

python GUI图形化编程wxpython的使用

一、python gui(图形化)模块介绍:   Tkinter :是python最简单的图形化模块,总共只有14种组建   Pyqt :是python最复杂也是使用最广泛的图形化   ...

python logging重复记录日志问题的解决方法

日志相关概念 日志是一种可以追踪某些软件运行时所发生事件的方法。软件开发人员可以向他们的代码中调用日志记录相关的方法来表明发生了某些事情。一个事件可以用一个可包含可选变量数据的消息来描...