pandas 缺失值与空值处理的实现方法

yipeiwu_com5年前Python基础

1.相关函数

  • df.dropna()
  • df.fillna()
  • df.isnull()
  • df.isna()

2.相关概念

空值:在pandas中的空值是""

缺失值:在dataframe中为nan或者naT(缺失时间),在series中为none或者nan即可

3.函数具体解释

DataFrame.dropna(axis=0, how='any', thresh=None, subset=None, inplace=False)

函数作用:删除含有空值的行或列

axis:维度,axis=0表示index行,axis=1表示columns列,默认为0

how:"all"表示这一行或列中的元素全部缺失(为nan)才删除这一行或列,"any"表示这一行或列中只要有元素缺失,就删除这一行或列

thresh:一行或一列中至少出现了thresh个才删除。

subset:在某些列的子集中选择出现了缺失值的列删除,不在子集中的含有缺失值得列或行不会删除(有axis决定是行还是列)

inplace:刷选过缺失值得新数据是存为副本还是直接在原数据上进行修改。

例子:

df = pd.DataFrame({"name": ['Alfred', 'Batman', 'Catwoman'],
        "toy": [np.nan, 'Batmobile', 'Bullwhip'],
         "born": [pd.NaT, pd.Timestamp("1940-04-25"),pd.NaT]})
 
print df


默认参数:删除行,只要有空值就会删除,不替换。

print df.dropna()
print df


print "delete colums"
print df.dropna(axis=1) #delete col


print "所有值全为缺失值才删除"
print df.dropna(how='all')


print "至少出现过两个缺失值才删除"
print df.dropna(thresh=2)


print "删除这个subset中的含有缺失值的行或列"
print df.dropna(subset=['name', 'born'])


DataFrame.fillna(value=None, method=None, axis=None, inplace=False, limit=None, downcast=None, **kwargs)

函数作用:填充缺失值

value:需要用什么值去填充缺失值

axis:确定填充维度,从行开始或是从列开始

method:ffill:用缺失值前面的一个值代替缺失值,如果axis =1,那么就是横向的前面的值替换后面的缺失值,如果axis=0,那么则是上面的值替换下面的缺失值。backfill/bfill,缺失值后面的一个值代替前面的缺失值。注意这个参数不能与value同时出现

limit:确定填充的个数,如果limit=2,则只填充两个缺失值。

示例:

df = pd.DataFrame([[np.nan, 2, np.nan, 0],
         [3, 4, np.nan, 1],
         [np.nan, np.nan, np.nan, 5],
        [np.nan, 3, np.nan, 4]],
         columns=list('ABCD'))
 
print df
 
print "横向用缺失值前面的值替换缺失值"
print df.fillna(axis=1,method='ffill')
 
print "纵向用缺失值上面的值替换缺失值"
print df.fillna(axis=0,method='ffill')


print df.fillna(0)


不同的列用不同的值填充:


对每列出现的替换值有次数限制,此处限制为一次


DataFrame.isna()

判断是不是缺失值:


isnull同上。

替换空值:

df = pd.DataFrame([[np.nan, 2, np.nan, 0],
         [3, 4, "", 1],
         [np.nan, np.nan, np.nan, 5],
        [np.nan, 3, "", 4]],
         columns=list('ABCD'))
 
print df


如上,缺失值是NAN,空值是没有显示。

替换空值代码:需要把含有空值的那一列提出来单独处理,然后在放进去就好。

clean_z = df['C'].fillna(0)
clean_z[clean_z==''] = 'hello'
df['C'] = clean_z
print df


以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

一篇文章弄懂Python中的可迭代对象、迭代器和生成器

一篇文章弄懂Python中的可迭代对象、迭代器和生成器

我们都知道,序列可以迭代。但是,你知道为什么吗? 本文来探讨一下迭代背后的原理。 序列可以迭代的原因:iter 函数。解释器需要迭代对象 x 时,会自动调用 iter(x)。内置的 it...

K-means聚类算法介绍与利用python实现的代码示例

K-means聚类算法介绍与利用python实现的代码示例

聚类 今天说K-means聚类算法,但是必须要先理解聚类和分类的区别,很多业务人员在日常分析时候不是很严谨,混为一谈,其实二者有本质的区别。 分类其实是从特定的数据中挖掘模式,作出判断的...

django站点管理详解

管理界面是基础设施中非常重要的一部分。这是以网页和有限的可信任管理者为基础的界面,它可以让你添加,编辑和删除网站内容。Django有自己的自动管理界面。这个特性是这样起作用的:它读取你模...

python进阶教程之函数对象(函数也是对象)

秉承着一切皆对象的理念,我们再次回头来看函数(function)。函数也是一个对象,具有属性(可以使用dir()查询)。作为对象,它还可以赋值给其它对象名,或者作为参数传递。 lambd...

简单了解python中的f.b.u.r函数

简单了解python中的f.b.u.r函数

这篇文章主要介绍了简单了解python中的f.b.u.r函数,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下 f/format() 格式...