简单了解Pandas缺失值处理方法

yipeiwu_com6年前Python基础

这篇文章主要介绍了简单了解Pandas缺失值处理方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下

判断数据是否为NaN:

pd.isnull(df),
pd.notnull(df)

判断缺失值是否存在

np.all(pd.notnull(data)) # 返回false代表有空值
np.any(pd.isnull(data)) #返回true代表有空值

处理方式:

  • 存在缺失值nan,并且是np.nan:
    • 1、删除缺失值:dropna(axis='rows')
      • 注:不会修改原数据,需要接受返回值
    • 2、替换缺失值:fillna(value, inplace=True)
      • value:替换成的值
      • inplace:True:会修改原数据,False:不替换修改原数据,生成新的对象
# 替换存在缺失值的样本的两列
# 替换填充平均值,中位数
movie['Revenue (Millions)'].fillna(movie['Revenue (Millions)'].mean(), inplace=True)
  • 不是缺失值nan,有默认标记的
    • 将不是nan的值替换成np.nan——df.replace(to_replace,value)
      • to_replace- 替换前的值—被替换的
      • value—要修改成的值,上岗的值
      • 再按照是nan的方式处理
# 把一些其它值标记的缺失值,替换成np.nan
wis = wis.replace(to_replace='?', value=np.nan)

SSL报错

以上数据在读取时,可能会报如下错误

URLError: <urlopen error [SSL: CERTIFICATE_VERIFY_FAILED] certificate verify failed (_ssl.c:833)>

解决办法:

# 全局取消证书验证
import ssl
ssl._create_default_https_context = ssl._create_unverified_context

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

Python使用剪切板的方法

此段代码可以利用剪切板,完成自动复制粘贴等功能。(Windows)  import sys import os.path import win32clipboard as...

python里使用正则的findall函数的实例详解

python里使用正则的findall函数的实例详解 在前面学习了正则的search()函数,这个函数可以找到一个匹配的字符串返回,但是想找到所有匹配的字符串返回,怎么办呢?其实得使用f...

使用Python的PEAK来适配协议的教程

如果您正尝试去处理元类,或者正受困于 Twisted 中的异步编程,或者正在研究由于使用了多分派而使您精疲力尽的面向对象编程,那么您完全错了!PEAK 将所有这些中的一些要素组合到了一个...

Python读csv文件去掉一列后再写入新的文件实例

用了两种方式解决该问题,都是网上现有的解决方案。 场景说明: 有一个数据文件,以文本方式保存,现在有三列user_id,plan_id,mobile_id。目标是得到新文件只有mobil...

Python中的if、else、elif语句用法简明讲解

下面我们学习if语句,输入下面的代码,确保能够正确运行。 people = 20 cats = 30 dogs = 15 if people < cats:...