Pandas数据离散化原理及实例解析

yipeiwu_com6年前Python基础

这篇文章主要介绍了Pandas数据离散化原理及实例解析,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下

为什么要离散化

  • 连续属性离散化的目的是为了简化数据结构,数据离散化技术可以用来减少给定连续属性值的个数。离散化方法经常作为数据挖掘的工具
  • 扔掉一些信息,可以让模型更健壮,泛化能力更强

什么是数据的离散化

连续属性的离散化就是在连续属性的值域上,将值域划分为若干个离散的区间,最后用不同的符号或整数 值代表落在每个子区间中的属性值

分箱

案例

1.先读取股票的数据,筛选出p_change数据

data = pd.read_csv("./data/stock_day.csv")
p_change= data['p_change']

2.将股票涨跌幅数据进行分组

使用的工具:

  • pd.qcut(data, bins)——等深分箱:
    • 对数据进行分组将数据分组 一般会与value_counts搭配使用,统计每组的个数
  • series.value_counts():统计分组次数
# 自行分组
qcut = pd.qcut(p_change, 10)
# 计算分到每个组数据个数
qcut.value_counts()

自定义区间分组:

  • pd.cut(data, bins)——等宽分箱:
    • bins是整数—等宽
    • bins是列表--自定义分箱
# 自己指定分组区间
bins = [-100, -7, -5, -3, 0, 3, 5, 7, 100]
p_counts = pd.cut(p_change, bins)

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

双向RNN:bidirectional_dynamic_rnn()函数的使用详解

双向RNN:bidirectional_dynamic_rnn()函数的使用详解

双向RNN:bidirectional_dynamic_rnn()函数的使用详解 先说下为什么要使用到双向RNN,在读一篇文章的时候,上文提到的信息十分的重要,但这些信息是不足以捕捉文章...

Python数组定义方法

本文实例讲述了Python数组定义方法。分享给大家供大家参考,具体如下: Python中没有数组的数据结构,但列表很像数组,如: a=[0,1,2] 这时:a[0]=0, a[...

Ubuntu18.04下python版本完美切换的解决方法

Ubuntu18.04下python版本完美切换的解决方法

ubuntu18.04版本,python版本python2.7,python3.5,python3.6 因为安装一些库会安装到python3.6上,而默认使用的是python2.7,使用...

python超简单解决约瑟夫环问题

本文实例讲述了python超简单解决约瑟夫环问题的方法。分享给大家供大家参考。具体分析如下: 约瑟环问题大家都熟悉。题目是这样的。一共有三十个人,从1-30依次编号。每次隔9个人就踢出去...

Python 合并多个TXT文件并统计词频的实现

Python 合并多个TXT文件并统计词频的实现

需求是:针对三篇英文文章进行分析,计算出现次数最多的 10 个单词 逻辑很清晰简单,不算难, 使用 python 读取多个 txt 文件,将文件的内容写入新的 txt 中,然后对新 tx...