Pandas数据离散化原理及实例解析

yipeiwu_com6年前Python基础

这篇文章主要介绍了Pandas数据离散化原理及实例解析,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下

为什么要离散化

  • 连续属性离散化的目的是为了简化数据结构,数据离散化技术可以用来减少给定连续属性值的个数。离散化方法经常作为数据挖掘的工具
  • 扔掉一些信息,可以让模型更健壮,泛化能力更强

什么是数据的离散化

连续属性的离散化就是在连续属性的值域上,将值域划分为若干个离散的区间,最后用不同的符号或整数 值代表落在每个子区间中的属性值

分箱

案例

1.先读取股票的数据,筛选出p_change数据

data = pd.read_csv("./data/stock_day.csv")
p_change= data['p_change']

2.将股票涨跌幅数据进行分组

使用的工具:

  • pd.qcut(data, bins)——等深分箱:
    • 对数据进行分组将数据分组 一般会与value_counts搭配使用,统计每组的个数
  • series.value_counts():统计分组次数
# 自行分组
qcut = pd.qcut(p_change, 10)
# 计算分到每个组数据个数
qcut.value_counts()

自定义区间分组:

  • pd.cut(data, bins)——等宽分箱:
    • bins是整数—等宽
    • bins是列表--自定义分箱
# 自己指定分组区间
bins = [-100, -7, -5, -3, 0, 3, 5, 7, 100]
p_counts = pd.cut(p_change, bins)

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

举例讲解Python中的身份运算符的使用方法

举例讲解Python中的身份运算符的使用方法

Python身份运算符 身份运算符用于比较两个对象的存储单元 以下实例演示了Python所有身份运算符的操作: #!/usr/bin/python a = 20 b = 20...

浅谈python中np.array的shape( ,)与( ,1)的区别

如下所示: >>> import numpy as np >>> x = np.array([1, 2]) >>> y = np...

Python中用于计算对数的log()方法

 log()方法返回x的自然对数,对于x>0。 语法 以下是log()方法的语法: import math math.log( x ) 注意:此函数是无法直接...

Window 64位下python3.6.2环境搭建图文教程

Window 64位下python3.6.2环境搭建图文教程

python3.6.2环境安装配置图文教程,具体如下 一、需要下载的软件 》python3.6.2.exe (也可以选择更新的版本) ---- -网址 》Anaconda3-4.4.0...

Windows下安装Scrapy

Windows下安装Scrapy

这几天正好有需求实现一个爬虫程序,想到爬虫程序立马就想到了python,python相关的爬虫资料好像也特别多。于是就决定用python来实现爬虫程序了,正好发现了python有一个开源...