Pandas数据离散化原理及实例解析

yipeiwu_com5年前Python基础

这篇文章主要介绍了Pandas数据离散化原理及实例解析,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下

为什么要离散化

  • 连续属性离散化的目的是为了简化数据结构,数据离散化技术可以用来减少给定连续属性值的个数。离散化方法经常作为数据挖掘的工具
  • 扔掉一些信息,可以让模型更健壮,泛化能力更强

什么是数据的离散化

连续属性的离散化就是在连续属性的值域上,将值域划分为若干个离散的区间,最后用不同的符号或整数 值代表落在每个子区间中的属性值

分箱

案例

1.先读取股票的数据,筛选出p_change数据

data = pd.read_csv("./data/stock_day.csv")
p_change= data['p_change']

2.将股票涨跌幅数据进行分组

使用的工具:

  • pd.qcut(data, bins)——等深分箱:
    • 对数据进行分组将数据分组 一般会与value_counts搭配使用,统计每组的个数
  • series.value_counts():统计分组次数
# 自行分组
qcut = pd.qcut(p_change, 10)
# 计算分到每个组数据个数
qcut.value_counts()

自定义区间分组:

  • pd.cut(data, bins)——等宽分箱:
    • bins是整数—等宽
    • bins是列表--自定义分箱
# 自己指定分组区间
bins = [-100, -7, -5, -3, 0, 3, 5, 7, 100]
p_counts = pd.cut(p_change, bins)

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

Python排序搜索基本算法之归并排序实例分析

Python排序搜索基本算法之归并排序实例分析

本文实例讲述了Python排序搜索基本算法之归并排序。分享给大家供大家参考,具体如下: 归并排序最令人兴奋的特点是:不论输入是什么样的,它对N个元素的序列排序所用时间与NlogN成正比。...

Python魔法方法 容器部方法详解

这篇文章主要介绍了Python魔法方法 容器部方法详解,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下 为了加深印象,也为了以后能够更好...

详谈python3中用for循环删除列表中元素的坑

for循环语句的对象是可迭代对象,可迭代对象需要实现__iter__或iter方法,并返回一个迭代器,什么是迭代器呢?迭代器只需要实现 __next__或next方法。 现在来验证一下列...

nginx+uwsgi+django环境搭建的方法步骤

环境搭建 1.安装uwsgi、nginx和django apt install nginx pip install uwsgi pip install django 2.测试...

Python输出各行命令详解

Python输出各行命令详解

创建main.py文件并粘贴下面代码 点击右键运行Debug 'main'后,下方的Debug窗口会出现ImportError: No module named 'bottle'这样的提...