基于python cut和qcut的用法及区别详解

yipeiwu_com5年前Python基础

我就废话不多说了,直接上代码吧:

from pandas import Series,DataFrame
import pandas as pd
import numpy as np
from numpy import nan as NA
from matplotlib import pyplot as plt
ages = [20,22,25,27,21,23,37,31,61,45,41,32]
#将所有的ages进行分组
bins = [18,25,35,60,100]
#使用pandas中的cut对年龄数据进行分组
cats = pd.cut(ages,bins)
#print(cats)
#调用pd.value_counts方法统计每个区间的个数
number=pd.value_counts(cats)
#print(pd.value_counts(cats))
#显示第几个区间index值
index=pd.cut(ages,bins).codes
#print(index)
#为分类出来的每一组年龄加上标签
group_names = ["Youth","YouthAdult","MiddleAged","Senior"]
personType=pd.cut(ages,bins,labels=group_names)
#print(personType)
plt.hist(personType)
#plt.show()
#cut和qcut的用法
data=[1,2,3,4,5,6,7,8,9,10]
result=pd.qcut(data,4)
print(' ',result)##qcut会将10个数据进行排序,然后再将data数据均分成四组
#统计落在每个区间的元素个数
print('dasdasdasdasdas:  ',pd.value_counts(result))
#qcut : 跟cut一样也可以自定义分位数(0到1之间的数值,包括端点)
results=pd.qcut(data,[0,0.1,0.5,0.9,1])
print('results:  ',results)
import numpy as np
import pandas as pd
data = np.random.rand(20)
print(data)
#用cut函数将一组数据分割成n份
#cut函数分割的方式:数据里的(最大值-最小值)/n=每个区间的间距
#利用数据中最大值和最小值的差除以分组数作为每一组数据的区间范围的差值
result = pd.cut(data,4,precision=2) #precision保留小数点的有效位数
print(result)
res_data=pd.value_counts(result)
print(res_data)

以上这篇基于python cut和qcut的用法及区别详解就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

跟老齐学Python之编写类之一创建实例

说明:关于类的这部分,我参考了《Learning Python》一书的讲解。 创建类 创建类的方法比较简单,如下: 复制代码 代码如下: class Person:  注意,...

python 使用socket传输图片视频等文件的实现方式

在开发一些需要网络通信的应用中,经常会用到各种网络协议进行通信,博主在开发实验室的机器人的时候就遇到了需要把机器人上采集到的图片传回服务器进行处理识别,在python下的实现方式如下(只...

给我一面国旗 python帮你实现

给我一面国旗 python帮你实现

本文实例为大家分享了Python之给我一面国旗的具体代码,供大家参考,具体内容如下 1、“给我一面国旗@微信官方” 今天“给我一面国旗@微信官方”刷爆了朋友圈,我也蹭波热度,出个Pyth...

pandas 数据索引与选取的实现方法

我们对 DataFrame 进行选择,大抵从这三个层次考虑:行列、区域、单元格。 其对应使用的方法如下: 一. 行,列 --> df[] 二. 区域   --...

influx+grafana自定义python采集数据和一些坑的总结

influx+grafana自定义python采集数据和一些坑的总结

先上网卡数据采集脚本,这个基本上是最大的坑,因为一些数据的类型不正确会导致no datapoint的错误,真是令人抓狂,注意其中几个key的值必须是int或者float类型,如果你不慎写...