基于python cut和qcut的用法及区别详解

yipeiwu_com6年前Python基础

我就废话不多说了,直接上代码吧:

from pandas import Series,DataFrame
import pandas as pd
import numpy as np
from numpy import nan as NA
from matplotlib import pyplot as plt
ages = [20,22,25,27,21,23,37,31,61,45,41,32]
#将所有的ages进行分组
bins = [18,25,35,60,100]
#使用pandas中的cut对年龄数据进行分组
cats = pd.cut(ages,bins)
#print(cats)
#调用pd.value_counts方法统计每个区间的个数
number=pd.value_counts(cats)
#print(pd.value_counts(cats))
#显示第几个区间index值
index=pd.cut(ages,bins).codes
#print(index)
#为分类出来的每一组年龄加上标签
group_names = ["Youth","YouthAdult","MiddleAged","Senior"]
personType=pd.cut(ages,bins,labels=group_names)
#print(personType)
plt.hist(personType)
#plt.show()
#cut和qcut的用法
data=[1,2,3,4,5,6,7,8,9,10]
result=pd.qcut(data,4)
print(' ',result)##qcut会将10个数据进行排序,然后再将data数据均分成四组
#统计落在每个区间的元素个数
print('dasdasdasdasdas:  ',pd.value_counts(result))
#qcut : 跟cut一样也可以自定义分位数(0到1之间的数值,包括端点)
results=pd.qcut(data,[0,0.1,0.5,0.9,1])
print('results:  ',results)
import numpy as np
import pandas as pd
data = np.random.rand(20)
print(data)
#用cut函数将一组数据分割成n份
#cut函数分割的方式:数据里的(最大值-最小值)/n=每个区间的间距
#利用数据中最大值和最小值的差除以分组数作为每一组数据的区间范围的差值
result = pd.cut(data,4,precision=2) #precision保留小数点的有效位数
print(result)
res_data=pd.value_counts(result)
print(res_data)

以上这篇基于python cut和qcut的用法及区别详解就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

python实现socket客户端和服务端简单示例

复制代码 代码如下:import socket#socket通信客户端def client():    mysocket=socket.socket(soc...

Python中的文件和目录操作实现代码

本文将详细解释这些函数的使用方法。首先,我们介绍Python语言中类似于Windows系统的dir命令的列出文件功能,然后描述如何测试一个文件名对应的是一个标准文件、目录还是链接,以及提...

Python中用Spark模块的使用教程

 在日常的编程中,我经常需要标识存在于文本文档中的部件和结构,这些文档包括:日志文件、配置文件、定界的数据以及格式更自由的(但还是半结构化的)报表格式。所有这些文档都拥有它们自...

python实现监控某个服务 服务崩溃即发送邮件报告

前言:最近我们的升级服务器有点不太稳定,经常崩溃掉。然后客户连接不上,跟我们反馈才知道。所以写这个脚本的目的就是为了比客户提前知道升级服务的运行状况,一旦崩溃掉,就能第一时间登录上去,开...

Django url,从一个页面调到另个页面的方法

创建项目和应用 django-admin startproject zqxt_views(项目名) cd zqxt_views python manage.py startapp c...