基于python cut和qcut的用法及区别详解

yipeiwu_com5年前Python基础

我就废话不多说了,直接上代码吧:

from pandas import Series,DataFrame
import pandas as pd
import numpy as np
from numpy import nan as NA
from matplotlib import pyplot as plt
ages = [20,22,25,27,21,23,37,31,61,45,41,32]
#将所有的ages进行分组
bins = [18,25,35,60,100]
#使用pandas中的cut对年龄数据进行分组
cats = pd.cut(ages,bins)
#print(cats)
#调用pd.value_counts方法统计每个区间的个数
number=pd.value_counts(cats)
#print(pd.value_counts(cats))
#显示第几个区间index值
index=pd.cut(ages,bins).codes
#print(index)
#为分类出来的每一组年龄加上标签
group_names = ["Youth","YouthAdult","MiddleAged","Senior"]
personType=pd.cut(ages,bins,labels=group_names)
#print(personType)
plt.hist(personType)
#plt.show()
#cut和qcut的用法
data=[1,2,3,4,5,6,7,8,9,10]
result=pd.qcut(data,4)
print(' ',result)##qcut会将10个数据进行排序,然后再将data数据均分成四组
#统计落在每个区间的元素个数
print('dasdasdasdasdas:  ',pd.value_counts(result))
#qcut : 跟cut一样也可以自定义分位数(0到1之间的数值,包括端点)
results=pd.qcut(data,[0,0.1,0.5,0.9,1])
print('results:  ',results)
import numpy as np
import pandas as pd
data = np.random.rand(20)
print(data)
#用cut函数将一组数据分割成n份
#cut函数分割的方式:数据里的(最大值-最小值)/n=每个区间的间距
#利用数据中最大值和最小值的差除以分组数作为每一组数据的区间范围的差值
result = pd.cut(data,4,precision=2) #precision保留小数点的有效位数
print(result)
res_data=pd.value_counts(result)
print(res_data)

以上这篇基于python cut和qcut的用法及区别详解就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

Python-基础-入门 简介

Python简介及入门 python为什么是python 选择自己喜欢的语言,这往往不容易,更多的是根据需求 话说,之前是java,大学用了三年+实习半年,后来入职做测试开发后,碰到了p...

Python冲顶大会 快来答题!

身边的人竟然不玩“跳一跳了”,都迷上了一个叫“冲顶大会”的东西,考了很多各学科的冷知识,文学、数学、地理、生物、动漫、八卦…小编网上找到一些关于python试题,大家都来答题吧。 1、下...

python 统计代码行数简单实例

 python 统计代码行数简单实例 送测的时候,发现需要统计代码行数 于是写了个小程序统计自己的代码的行数。 #calclate_code_lines.py impor...

使用Python编写Prometheus监控的方法

要使用python编写Prometheus监控,需要你先开启Prometheus集群。可以参考/post/148895.htm 安装。在python中实现服务器端。在Prometheus...

Python实现大数据收集至excel的思路详解

一、在工程目录中新建一个excel文件 二、使用python脚本程序将目标excel文件中的列头写入,本文省略该部分的code展示,可自行网上查询 三、以下code内容为:实现从接口获取...