python实现差分隐私Laplace机制详解

yipeiwu_com6年前Python基础

Laplace分布定义:

下面先给出Laplace分布实现代码:

import matplotlib.pyplot as plt
import numpy as np
 
def laplace_function(x,beta):
 result = (1/(2*beta)) * np.e**(-1*(np.abs(x)/beta))
 return result
#在-5到5之间等间隔的取10000个数
x = np.linspace(-5,5,10000)
y1 = [laplace_function(x_,0.5) for x_ in x]
y2 = [laplace_function(x_,1) for x_ in x]
y3 = [laplace_function(x_,2) for x_ in x]
 
 
plt.plot(x,y1,color='r',label='beta:0.5')
plt.plot(x,y2,color='g',label='beta:1')
plt.plot(x,y3,color='b',label='beta:2')
plt.title("Laplace distribution")
plt.legend()
plt.show()

效果图如下:

接下来给出Laplace机制实现:

Laplace机制,即在操作函数结果中加入服从Laplace分布的噪声。

Laplace概率密度函数Lap(x|b)=1/2b exp(-|x|/b)正比于exp(-|x|/b)。

import numpy as np
 
def noisyCount(sensitivety,epsilon):
 beta = sensitivety/epsilon
 u1 = np.random.random()
 u2 = np.random.random()
 if u1 <= 0.5:
  n_value = -beta*np.log(1.-u2)
 else:
  n_value = beta*np.log(u2)
 print(n_value)
 return n_value
 
def laplace_mech(data,sensitivety,epsilon):
 for i in range(len(data)):
  data[i] += noisyCount(sensitivety,epsilon)
 return data
 
if __name__ =='__main__':
 x = [1.,1.,0.]
 sensitivety = 1
 epsilon = 1
 data = laplace_mech(x,sensitivety,epsilon)
 for j in data:
  print(j)

以上这篇python实现差分隐私Laplace机制详解就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

Python交互式图形编程的实现

Python交互式图形编程的实现

一、 1、图形显示 图素法 像素法 图素法---矢量图:以图形对象为基本元素组成的图形,如矩形、 圆形 像素法---标量图:以像素点为基本单位形成图形 2、图形用户界...

python使用Turtle库绘制动态钟表

python使用Turtle库绘制动态钟表

Python函数库众多,而且在不断更新,所以学习这些函数库最有效的方法,就是阅读Python官方文档。同时借助Google和百度。 本文介绍的turtle库对应的官方文档地址 绘制动态钟...

解决python flask中config配置管理的问题

在项目中我们需要配置各种环境。如果我们的配置项很少的话,可以直接简单粗暴的来; 比如: app =Flask(__name__) app.config['DEBUG']=True...

python学生管理系统代码实现

本文实例为大家分享了python学生管理系统的具体代码,供大家参考,具体内容如下 类 class Student: stuID = "" name = "" sex =...

python 基于TCP协议的套接字编程详解

基于TCP协议的套接字编程 实现电话沟通为例,这里传递的是字符,可以自己尝试去发送一个文件 # 服务端 import socket # 1. 符合TCP协议的手机 server =...