python实现差分隐私Laplace机制详解

yipeiwu_com6年前Python基础

Laplace分布定义:

下面先给出Laplace分布实现代码:

import matplotlib.pyplot as plt
import numpy as np
 
def laplace_function(x,beta):
 result = (1/(2*beta)) * np.e**(-1*(np.abs(x)/beta))
 return result
#在-5到5之间等间隔的取10000个数
x = np.linspace(-5,5,10000)
y1 = [laplace_function(x_,0.5) for x_ in x]
y2 = [laplace_function(x_,1) for x_ in x]
y3 = [laplace_function(x_,2) for x_ in x]
 
 
plt.plot(x,y1,color='r',label='beta:0.5')
plt.plot(x,y2,color='g',label='beta:1')
plt.plot(x,y3,color='b',label='beta:2')
plt.title("Laplace distribution")
plt.legend()
plt.show()

效果图如下:

接下来给出Laplace机制实现:

Laplace机制,即在操作函数结果中加入服从Laplace分布的噪声。

Laplace概率密度函数Lap(x|b)=1/2b exp(-|x|/b)正比于exp(-|x|/b)。

import numpy as np
 
def noisyCount(sensitivety,epsilon):
 beta = sensitivety/epsilon
 u1 = np.random.random()
 u2 = np.random.random()
 if u1 <= 0.5:
  n_value = -beta*np.log(1.-u2)
 else:
  n_value = beta*np.log(u2)
 print(n_value)
 return n_value
 
def laplace_mech(data,sensitivety,epsilon):
 for i in range(len(data)):
  data[i] += noisyCount(sensitivety,epsilon)
 return data
 
if __name__ =='__main__':
 x = [1.,1.,0.]
 sensitivety = 1
 epsilon = 1
 data = laplace_mech(x,sensitivety,epsilon)
 for j in data:
  print(j)

以上这篇python实现差分隐私Laplace机制详解就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

python入门前的第一课 python怎样入门

python入门前的第一课 python怎样入门

人工智能时代的到来,很多文章说这么一句:“不会python,就不要说自己是程序员”,这说的有点夸张了,但确实觉得目前python这个语言值得学习,而且会python是高薪程序员的必备技能...

Python Django使用forms来实现评论功能

Python Django使用forms来实现评论功能

貌似Django从版本1.6开始就放弃了对自带的comments的使用,具体原因未查,但是现在使用Django的内部的模块也可以实现评论功能,那就是借助于forms模块,下面是我的一个小...

对numpy中布尔型数组的处理方法详解

布尔数组的操作方式主要有两种,any用于查看数组中是否有True的值,而all则用于查看数组是否全都是True。 如果用于计算的时候,布尔量会被转换成1和0,True转换成1,False...

解决python opencv无法显示图片的问题

解决python opencv无法显示图片的问题

结合网上解决方法,总结了一下 注意三点: 1.文件名或路径名开头如果会引起转义,则\要替换为\\ 2.文件不能放在桌面,因为读取时按中文路径 3.运行后未响应,原因还没有查明,在下一行...

django中SMTP发送邮件配置详解

django中SMTP发送邮件配置详解

Django中内置了邮件发送功能,被定义在django.core.mail模块中。发送邮件需要使用SMTP服务器,常用的免费服务器有:163、126、QQ,下面以qq邮箱为例。 注册qq...