python实现差分隐私Laplace机制详解

yipeiwu_com5年前Python基础

Laplace分布定义:

下面先给出Laplace分布实现代码:

import matplotlib.pyplot as plt
import numpy as np
 
def laplace_function(x,beta):
 result = (1/(2*beta)) * np.e**(-1*(np.abs(x)/beta))
 return result
#在-5到5之间等间隔的取10000个数
x = np.linspace(-5,5,10000)
y1 = [laplace_function(x_,0.5) for x_ in x]
y2 = [laplace_function(x_,1) for x_ in x]
y3 = [laplace_function(x_,2) for x_ in x]
 
 
plt.plot(x,y1,color='r',label='beta:0.5')
plt.plot(x,y2,color='g',label='beta:1')
plt.plot(x,y3,color='b',label='beta:2')
plt.title("Laplace distribution")
plt.legend()
plt.show()

效果图如下:

接下来给出Laplace机制实现:

Laplace机制,即在操作函数结果中加入服从Laplace分布的噪声。

Laplace概率密度函数Lap(x|b)=1/2b exp(-|x|/b)正比于exp(-|x|/b)。

import numpy as np
 
def noisyCount(sensitivety,epsilon):
 beta = sensitivety/epsilon
 u1 = np.random.random()
 u2 = np.random.random()
 if u1 <= 0.5:
  n_value = -beta*np.log(1.-u2)
 else:
  n_value = beta*np.log(u2)
 print(n_value)
 return n_value
 
def laplace_mech(data,sensitivety,epsilon):
 for i in range(len(data)):
  data[i] += noisyCount(sensitivety,epsilon)
 return data
 
if __name__ =='__main__':
 x = [1.,1.,0.]
 sensitivety = 1
 epsilon = 1
 data = laplace_mech(x,sensitivety,epsilon)
 for j in data:
  print(j)

以上这篇python实现差分隐私Laplace机制详解就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

使用Filter过滤python中的日志输出的实现方法

事情是这样的,我写了一个tornado的服务,过程当中我用logging记录一些内容,由于一开始并没有仔细观察tornado自已的日志管理,所以我就一般用debug来记录普通日志,err...

Python中的引用和拷贝浅析

If an object's value can be modified, the object is said to be mutable. If the value cannot b...

Python生成验证码、计算具体日期是一年中的第几天实例代码详解

1、约瑟夫环问题 《幸运的基督徒》 有15个基督徒和15个非基督徒在海上遇险,为了能让一部分人活下来不得不将其中15个人扔到海里面去,有个人想了个办法就是大家围成一个圈,由某个人开始从1...

Python中的浮点数原理与运算分析

本文实例讲述了Python中的浮点数原理与运算。分享给大家供大家参考,具体如下: 先看一个违反直觉的例子: >>> s = 0. >>> for...

详解Python用户登录接口的方法

详解Python用户登录接口的方法

Readme: blog address: 摘要:编写登录接口 输入用户名、密码 认证成功后显示欢迎信息 输错3次后锁定 关键词:循环;判断;外部数据读写;列表;字典; 展望:可以结合数...