python实现差分隐私Laplace机制详解

yipeiwu_com5年前Python基础

Laplace分布定义:

下面先给出Laplace分布实现代码:

import matplotlib.pyplot as plt
import numpy as np
 
def laplace_function(x,beta):
 result = (1/(2*beta)) * np.e**(-1*(np.abs(x)/beta))
 return result
#在-5到5之间等间隔的取10000个数
x = np.linspace(-5,5,10000)
y1 = [laplace_function(x_,0.5) for x_ in x]
y2 = [laplace_function(x_,1) for x_ in x]
y3 = [laplace_function(x_,2) for x_ in x]
 
 
plt.plot(x,y1,color='r',label='beta:0.5')
plt.plot(x,y2,color='g',label='beta:1')
plt.plot(x,y3,color='b',label='beta:2')
plt.title("Laplace distribution")
plt.legend()
plt.show()

效果图如下:

接下来给出Laplace机制实现:

Laplace机制,即在操作函数结果中加入服从Laplace分布的噪声。

Laplace概率密度函数Lap(x|b)=1/2b exp(-|x|/b)正比于exp(-|x|/b)。

import numpy as np
 
def noisyCount(sensitivety,epsilon):
 beta = sensitivety/epsilon
 u1 = np.random.random()
 u2 = np.random.random()
 if u1 <= 0.5:
  n_value = -beta*np.log(1.-u2)
 else:
  n_value = beta*np.log(u2)
 print(n_value)
 return n_value
 
def laplace_mech(data,sensitivety,epsilon):
 for i in range(len(data)):
  data[i] += noisyCount(sensitivety,epsilon)
 return data
 
if __name__ =='__main__':
 x = [1.,1.,0.]
 sensitivety = 1
 epsilon = 1
 data = laplace_mech(x,sensitivety,epsilon)
 for j in data:
  print(j)

以上这篇python实现差分隐私Laplace机制详解就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

Python生成随机密码

本人  python新手,使用的环境是python2.7,勿喷 复制代码 代码如下: # -*- coding:utf8 -*- import random import st...

Django框架创建项目的方法入门教程

Django框架创建项目的方法入门教程

本文实例讲述了Django框架创建项目的方法。分享给大家供大家参考,具体如下: Django 管理工具 安装 Django 之后,就有了可用的管理工具 django-admin.py。我...

Python之pandas读写文件乱码的解决方法

python读写文件有时候会出现   ‘XXX'编码不能打开XXX什么的,用记事本打开要读取的文件,另存为UTF-8编码,然后再用py去读应该可以了。如果还不行,那...

python 自定义装饰器实例详解

本文实例讲述了python 自定义装饰器。分享给大家供大家参考,具体如下: 先看一个例子 def deco(func): print("before myfunc() calle...

python批量读取txt文件为DataFrame的方法

python批量读取txt文件为DataFrame的方法

我们有时候会批量处理同一个文件夹下的文件,并且希望读取到一个文件里面便于我们计算操作。比方我有下图一系列的txt文件,我该如何把它们写入一个txt文件中并且读取为DataFrame格式呢...