python实现差分隐私Laplace机制详解

yipeiwu_com5年前Python基础

Laplace分布定义:

下面先给出Laplace分布实现代码:

import matplotlib.pyplot as plt
import numpy as np
 
def laplace_function(x,beta):
 result = (1/(2*beta)) * np.e**(-1*(np.abs(x)/beta))
 return result
#在-5到5之间等间隔的取10000个数
x = np.linspace(-5,5,10000)
y1 = [laplace_function(x_,0.5) for x_ in x]
y2 = [laplace_function(x_,1) for x_ in x]
y3 = [laplace_function(x_,2) for x_ in x]
 
 
plt.plot(x,y1,color='r',label='beta:0.5')
plt.plot(x,y2,color='g',label='beta:1')
plt.plot(x,y3,color='b',label='beta:2')
plt.title("Laplace distribution")
plt.legend()
plt.show()

效果图如下:

接下来给出Laplace机制实现:

Laplace机制,即在操作函数结果中加入服从Laplace分布的噪声。

Laplace概率密度函数Lap(x|b)=1/2b exp(-|x|/b)正比于exp(-|x|/b)。

import numpy as np
 
def noisyCount(sensitivety,epsilon):
 beta = sensitivety/epsilon
 u1 = np.random.random()
 u2 = np.random.random()
 if u1 <= 0.5:
  n_value = -beta*np.log(1.-u2)
 else:
  n_value = beta*np.log(u2)
 print(n_value)
 return n_value
 
def laplace_mech(data,sensitivety,epsilon):
 for i in range(len(data)):
  data[i] += noisyCount(sensitivety,epsilon)
 return data
 
if __name__ =='__main__':
 x = [1.,1.,0.]
 sensitivety = 1
 epsilon = 1
 data = laplace_mech(x,sensitivety,epsilon)
 for j in data:
  print(j)

以上这篇python实现差分隐私Laplace机制详解就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

Python 使用requests模块发送GET和POST请求的实现代码

①GET # -*- coding:utf-8 -*- import requests def get(url, datas=None): response = reques...

Python实现从url中提取域名的几种方法

从url中找到域名,首先想到的是用正则,然后寻找相应的类库。用正则解析有很多不完备的地方,url中有域名,域名后缀一直在不断增加等。通过google查到几种方法,一种是用Python中自...

python3图片文件批量重命名处理

本文实例为大家分享了python3图片文件批量重命名的具体代码,供大家参考,具体内容如下 #!/usr/bin/env python # coding=utf-8 # 批量重命名图片...

pandas实现DataFrame显示最大行列,不省略显示实例

如下所示: import pandas as pd #显示所有列 pd.set_option('display.max_columns', None) #显示所有行 pd.set_...

解决Python3 控制台输出InsecureRequestWarning问题

解决Python3 控制台输出InsecureRequestWarning的问题 问题: 使用Python3 requests发送HTTPS请求,已经关闭认证(verify=False)...