Pytorch保存模型用于测试和用于继续训练的区别详解

yipeiwu_com5年前Python基础

保存模型

保存模型仅仅是为了测试的时候,只需要

torch.save(model.state_dict, path)

path 为保存的路径

但是有时候模型及数据太多,难以一次性训练完的时候,而且用的还是 Adam优化器的时候, 一定要保存好训练的优化器参数以及epoch

state = { 'model': model.state_dict(), 'optimizer':optimizer.state_dict(), 'epoch': epoch }  
torch.save(state, path)

因为这里

def adjust_learning_rate(optimizer, epoch):
  lr_t = lr
  lr_t = lr_t * (0.3 ** (epoch // 2))
  for param_group in optimizer.param_groups:
    param_group['lr'] = lr_t

学习率是根据epoch变化的, 如果不保存epoch的话,基本上每次都从epoch为0开始训练,这样学习率就相当于不变了!!

恢复模型

恢复模型只用于测试的时候,

model.load_state_dict(torch.load(path))

path为之前存储模型时的路径

但是如果是用于继续训练的话,

checkpoint = torch.load(path)
model.load_state_dict(checkpoint['model'])
optimizer.load_state_dict(checkpoint['optimizer'])
start_epoch = checkpoint['epoch']+1

依次恢复出模型 优化器参数以及epoch

以上这篇Pytorch保存模型用于测试和用于继续训练的区别详解就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

Python将图片批量从png格式转换至WebP格式

Python将图片批量从png格式转换至WebP格式

实现效果 将位于/img目录下的1000张.png图片,转换成.webp格式,并存放于img_webp文件夹内。 源图片目录 目标图片目录 关于批量生成1000张图片,可以参考这篇文...

win10安装tesserocr配置 Python使用tesserocr识别字母数字验证码

win10安装tesserocr配置 Python使用tesserocr识别字母数字验证码

链接:https://pan.baidu.com/s/1l2yiba7ZTPUTf41ZnJ4PYw 提取码:t3bq win10安装tesserocr 首先需要下载tesseract,...

django初始化数据库的实例

最近项目需要,需要在表创建好之后,初始化一些数据。Django初始化数据的方法有很多,但都需要额外的手动操作,不智能。 看网上有一种方法用post_syncdb信号来初始化数据库,但是我...

django用户登录验证的完整示例代码

django用户登录验证的完整示例代码

1,urls.py内容: from django.conf.urls import url from django.contrib import admin from myApp...

Python实现Linux监控的方法

工作原理:基于/proc 文件系统 Linux 系统为管理员提供了非常好的方法,使其可以在系统运行时更改内核,而不需要重新引导内核系统,这是通过/proc 虚拟文件系统实现的。/proc...