Pytorch保存模型用于测试和用于继续训练的区别详解

yipeiwu_com5年前Python基础

保存模型

保存模型仅仅是为了测试的时候,只需要

torch.save(model.state_dict, path)

path 为保存的路径

但是有时候模型及数据太多,难以一次性训练完的时候,而且用的还是 Adam优化器的时候, 一定要保存好训练的优化器参数以及epoch

state = { 'model': model.state_dict(), 'optimizer':optimizer.state_dict(), 'epoch': epoch }  
torch.save(state, path)

因为这里

def adjust_learning_rate(optimizer, epoch):
  lr_t = lr
  lr_t = lr_t * (0.3 ** (epoch // 2))
  for param_group in optimizer.param_groups:
    param_group['lr'] = lr_t

学习率是根据epoch变化的, 如果不保存epoch的话,基本上每次都从epoch为0开始训练,这样学习率就相当于不变了!!

恢复模型

恢复模型只用于测试的时候,

model.load_state_dict(torch.load(path))

path为之前存储模型时的路径

但是如果是用于继续训练的话,

checkpoint = torch.load(path)
model.load_state_dict(checkpoint['model'])
optimizer.load_state_dict(checkpoint['optimizer'])
start_epoch = checkpoint['epoch']+1

依次恢复出模型 优化器参数以及epoch

以上这篇Pytorch保存模型用于测试和用于继续训练的区别详解就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

Python3.x+迅雷x 自动下载高分电影的实现方法

Python3.x+迅雷x 自动下载高分电影的实现方法

快要过年了,大家都在忙些什么呢?一到年底公司各种抢票,备年货,被这过年的气氛一烘,都归心似箭,哪还有心思上班啊。归心似箭=产出低下=一行代码十个错=无聊。于是想起了以前学过一段时间的Py...

Python高级特性 切片 迭代解析

Python高级特性 切片 迭代解析

切片:方便截取list、tuple、字符串部分索引的内容 正序切片 语法:dlist = doList[0:3]表示,从索引0开始取,直到索引3为止,但不包括索引3。即索引0,1,2...

python+mysql实现教务管理系统

本文实例为大家分享了python实现教务管理系统,供大家参考,具体内容如下 mysql+python构成教务管理系统,提供系统管理员,教职工,学生三级。有注册,添加,修改,发布信息等功能...

Python列表(list)常用操作方法小结

常见列表对象操作方法: list.append(x) 把一个元素添加到链表的结尾,相当于 a[len(a):] = [x] 。 list.extend(L) 将一个给定列表中的所有元素都...

使用Python中的cookielib模拟登录网站

前面简单提到了 Python 模拟登录的程序,但是没写清楚,这里再补上一个带注释的 Python 模拟登录的示例程序。简单说一下流程:先用cookielib获取cookie,再用获取到的...