关于Numpy数据类型对象(dtype)使用详解

yipeiwu_com5年前Python基础

常用方法

#记住引入numpy时要是用别名np,则所有的numpy字样都要替换
 #查询数值类型
>>>type(float)
dtype('float64')
# 查询字符代码
>>> dtype('f')
dtype('float32')
>>> dtype('d')
dtype('float64')
# 查询双字符代码
>>> dtype('f8')
dtype('float64')
# 获取所有字符代码
>>> sctypeDict.keys()
[0, … 'i2', 'int0']
 
# char 属性用来获取字符代码
>>> t = dtype('Float64')
>>> t.char
'd'
# type 属性用来获取类型
>>> t.type
<type 'numpy.float64'>
 
# str 属性获取完整字符串表示
# 第一个字符是字节序,< 表示小端,> 表示大端,| 表示平台的字节序
>>> t.str
'<f8'
 
# 获取大小
>>> t.itemsize
8
 
# 许多函数拥有 dtype 参数
# 传入数值类型、字符代码和 dtype 都可以
>>> arange(7, dtype=uint16)
array([0, 1, 2, 3, 4, 5, 6], dtype=uint16)

类型参数及缩写

类型 字符代码
bool ?, b1
int8 b, i1
uint8 B, u1
int16 h, i2
uint16 H, u2
int32 i, i4
uint32 I, u4
int64 q, i8
uint64 Q, u8
float16 f2, e
float32 f4, f
float64 f8, d
complex64 F4, F
complex128 F8, D
str a, S(可以在S后面添加数字,表示字符串长度,比如S3表示长度为三的字符串,不写则为最大长度)
unicode U
object O
void V

自定义异构数据类型

基本书写格式

import numpy
#定义t的各个字段类型
>>> t = dtype([('name', str, 40), ('numitems', numpy.int32), ('price',numpy.float32)])
>>> t
dtype([('name', '|S40'), ('numitems', '<i4'), ('price','<f4')])
 
# 获取字段类型
>>> t['name']
dtype('|S40')
 
# 使用记录类型创建数组
# 否则它会把记录拆开
>>> itemz = array([('Meaning of life DVD', 42, 3.14), ('Butter', 13,2.72)], dtype=t)
>>> itemz[1]
('Butter', 13, 2.7200000286102295)
#再举个例*
>>>adt = np.dtype("a3, 3u8, (3,4)a10") #3字节字符串、3个64位整型子数组、3*4的10字节字符串数组,注意8为字节
>>>itemz = np.array([('Butter',[13,2,3],[['d','o','g','s'],['c','a','t','s'],['c','o','w','s']])],dtype=adt)
>>>itemz
(b'But', [13, 2, 3], [[b'd', b'o', b'g', b's'], [b'c', b'a', b't', b's'], [b'c', b'o', b'w', b's']])

其他书写格式

#(flexible_dtype, itemsize)第一个大小不固定的参数类型,第二传入大小:
>>> dt = np.dtype((void, 10)) #10位
>>> dt = np.dtype((str, 35))  # 35字符字符串
>>> dt = np.dtype(('U', 10))  # 10字符unicode string
 
#(fixed_dtype, shape)第一个传入固定大小的类型参数,第二参数传入个数
>>> dt = np.dtype((np.int32, (2,2)))     # 2*2int子数组
举例: >>>item = np.array([([12,12],[55,56])], dtype=dt)
array([[12, 12], [55, 56]])
>>> dt = np.dtype(('S10', 1))         # 10字符字符串
>>> dt = np.dtype(('i4, (2,3)f8, f4', (2,3))) # 2*3结构子数组
 
#[(field_name, field_dtype, field_shape), …]
>>> dt = np.dtype([('big', '>i4'), ('little', '<i4')])
>>> dt = np.dtype([('R','u1'), ('G','u1'), ('B','u1'), ('A','u1')])
 
#{‘names': …, ‘formats': …, ‘offsets': …, ‘titles': …, ‘itemsize': …}:
>>> dt= np.dtype({'names':('Date','Close'),'formats':('S10','f8')})
>>> dt = np.dtype({'names': ['r','b'], 'formats': ['u1', 'u1'], 'offsets': [0, 2],'titles': ['Red pixel', 'Blue pixel']})
 
#(base_dtype, new_dtype):
>>>dt = np.dtype((np.int32, (np.int8, 4))) //base_dtype被分成4个int8的子数组

以上这篇关于Numpy数据类型对象(dtype)使用详解就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

python requests指定出口ip的例子

爬虫需要,一个机器多个口,一个口多个ip,为轮询这些ip demo #coding=utf-8 import requests,sys,socket from requests_to...

Python的Django框架中URLconf相关的一些技巧整理

提供视图配置选项 如果你发布一个Django的应用,你的用户可能会希望配置上能有些自由度。 这种情况下,为你认为用户可能希望改变的配置选项添加一些钩子到你的视图中会是一个很好的主意。 你...

python tkinter图形界面代码统计工具(更新)

python tkinter图形界面代码统计工具(更新)

本文为大家分享了python tkinter图形界面代码统计工具的更新版,供大家参考,具体内容如下 代码统计工具 修改了导出excel功能,把原来的主文件进行了拆分 code_count...

python实现批量转换文件编码(批转换编码示例)

复制代码 代码如下:# -*- coding:utf-8 -*-__author__ = 'walkskyer' import osimport glob class Encoding:...

python实现决策树分类算法

python实现决策树分类算法

本文实例为大家分享了python实现决策树分类算法的具体代码,供大家参考,具体内容如下 1、概述 决策树(decision tree)——是一种被广泛使用的分类算法。 相比贝叶斯算法,决...