np.newaxis 实现为 numpy.ndarray(多维数组)增加一个轴

yipeiwu_com5年前Python基础

如下所示:

>> type(np.newaxis)
NoneType
>> np.newaxis == None
True

np.newaxis 在使用和功能上等价于 None,查看源码发现:newaxis = None,其实就是 None 的一个别名。

1. np.newaxis 的实用

>> x = np.arange(3)
>> x
array([0, 1, 2])
>> x.shape
(3,)

>> x[:, np.newaxis]
array([[0],
    [1],
    [2]])

>> x[:, None]
array([[0],
    [1],
    [2]])

>> x[:, np.newaxis].shape
 (3, 1)

2. 索引多维数组的某一列时返回的是一个行向量

>>> X = np.array([[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12]])
>>> X[:, 1]
array([2, 6, 10])    % 这里是一个行
>>> X[:, 1].shape    % X[:, 1] 的用法完全等同于一个行,而不是一个列,
(3, )

如果我们索引多维数组的某一列时,返回的仍然是列的结构,一种正确的索引方式是:

>>>X[:, 1][:, np.newaxis]
array([[2],
   [6],
   [10]])

如果想实现第二列和第四列的拼接(层叠):

>>>X_sub = np.hstack([X[:, 1][:, np.newaxis], X[:, 3][:, np.newaxis]])      
          % hstack:horizontal stack,水平方向上的层叠
>>>X_sub
array([[2, 4]
   [6, 8]
   [10, 12]])

当然更为简单的方式还是使用切片:

>> X[:, [1, 3]]
array([[ 2, 4],
    [ 6, 8],
    [10, 12]])

3. 使用 np.expand_dims

>> X = np.random.randint(0, 9, (2, 3))
>> mean_X = np.mean(X, axis=0)
>> X - mean_X           # 这样做是没有问题的

>> mean_X = np.mean(X, axis=1)
>> X - mean_X
ValueError: operands could not be broadcast together with shapes (2,3) (2,)

此时便需要手动的调整 mean_X 的维度,使其能够 broadcast,有以下三种方式,在指定的轴上进行 broadcast:

mean_X[:, None]

mean_X[:, np.newaxis]

mean_X = np.expand_dims(mean_X, axis=1)

以上这篇np.newaxis 实现为 numpy.ndarray(多维数组)增加一个轴就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

用Python输出一个杨辉三角的例子

关于杨辉三角是什么东西,右转维基百科:杨辉三角 稍微看一下直观一点的图:复制代码 代码如下:        1       1 1      1 2 1     1 3 3 1    1...

python中去空格函数的用法

本文简单介绍了Python中去空格函数的用法,这是一个很实用的函数,希望对大家的Python程序设计有所帮助。具体分析如下: 在Python中字符串处理函数里有三个去空格的函数: str...

Django压缩静态文件的实现方法详析

django静态文件配置原理 静态文件配置就是为了让用户请求时django服务器能找到静态文件返回。 首先要理解几个概念: 媒体文件:用户上传的文件 静态文件:css,js,...

python 在指定范围内随机生成不重复的n个数实例

python 在指定范围内随机生成不重复的n个数实例

利用Python中的randomw.sample()函数实现 resultList=random.sample(range(A,B),N); #表示从[A,B]间随机生成N个数,结...

python中的线程threading.Thread()使用详解

python中的线程threading.Thread()使用详解

1. 线程的概念: 线程,有时被称为轻量级进程(Lightweight Process,LWP),是程序执行流的最小单元。一个标准的线程由线程ID,当前指令指针(PC),寄存器集合和堆栈...