np.newaxis 实现为 numpy.ndarray(多维数组)增加一个轴

yipeiwu_com6年前Python基础

如下所示:

>> type(np.newaxis)
NoneType
>> np.newaxis == None
True

np.newaxis 在使用和功能上等价于 None,查看源码发现:newaxis = None,其实就是 None 的一个别名。

1. np.newaxis 的实用

>> x = np.arange(3)
>> x
array([0, 1, 2])
>> x.shape
(3,)

>> x[:, np.newaxis]
array([[0],
    [1],
    [2]])

>> x[:, None]
array([[0],
    [1],
    [2]])

>> x[:, np.newaxis].shape
 (3, 1)

2. 索引多维数组的某一列时返回的是一个行向量

>>> X = np.array([[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12]])
>>> X[:, 1]
array([2, 6, 10])    % 这里是一个行
>>> X[:, 1].shape    % X[:, 1] 的用法完全等同于一个行,而不是一个列,
(3, )

如果我们索引多维数组的某一列时,返回的仍然是列的结构,一种正确的索引方式是:

>>>X[:, 1][:, np.newaxis]
array([[2],
   [6],
   [10]])

如果想实现第二列和第四列的拼接(层叠):

>>>X_sub = np.hstack([X[:, 1][:, np.newaxis], X[:, 3][:, np.newaxis]])      
          % hstack:horizontal stack,水平方向上的层叠
>>>X_sub
array([[2, 4]
   [6, 8]
   [10, 12]])

当然更为简单的方式还是使用切片:

>> X[:, [1, 3]]
array([[ 2, 4],
    [ 6, 8],
    [10, 12]])

3. 使用 np.expand_dims

>> X = np.random.randint(0, 9, (2, 3))
>> mean_X = np.mean(X, axis=0)
>> X - mean_X           # 这样做是没有问题的

>> mean_X = np.mean(X, axis=1)
>> X - mean_X
ValueError: operands could not be broadcast together with shapes (2,3) (2,)

此时便需要手动的调整 mean_X 的维度,使其能够 broadcast,有以下三种方式,在指定的轴上进行 broadcast:

mean_X[:, None]

mean_X[:, np.newaxis]

mean_X = np.expand_dims(mean_X, axis=1)

以上这篇np.newaxis 实现为 numpy.ndarray(多维数组)增加一个轴就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

零基础使用Python读写处理Excel表格的方法

零基础使用Python读写处理Excel表格的方法

引 由于需要解决大批量Excel处理的事情,与其手工操作还不如写个简单的代码来处理,大致选了一下感觉还是Python最容易操作。 安装库Python环境 首先当然是配环境,不过选Pyth...

Python算法输出1-9数组形成的结果为100的所有运算式

问题: 编写一个在1,2,…,9(顺序不能变)数字之间插入+或-或什么都不插入,使得计算结果总是100的程序,并输出所有的可能性。例如:1 + 2 + 34–5 + 67–8 + 9 =...

利用Python批量压缩png方法实例(支持过滤个别文件与文件夹)

前言 本文主要给大家介绍的关于Python批量压缩png的相关资料,分享出来供大家参考学习,下面话不多说了,来一起看看详细的介绍: 1.需求 为什么会有这个需求?是因为游戏的资源大多是...

对python中执行DOS命令的3种方法总结

1. 使用os.system("cmd") 特点是执行的时候程序会打出cmd在Linux上执行的信息。 import os os.system("ls") 2. 使用Popen...

Python流程控制 if else实现解析

Python流程控制 if else实现解析

一、流程控制 假如把程序比做走路,那我们到现在为止,一直走的都是直路,还没遇到过分岔口。当遇到分岔口时,你得判断哪条岔路是你要走的路,如果我们想让程序也能处理这样的判断,该怎么办?很简...