numpy np.newaxis 的实用分享

yipeiwu_com6年前Python基础

如下所示:

>> type(np.newaxis)
NoneType
>> np.newaxis == None
True

np.newaxis 在使用和功能上等价于 None,其实就是 None 的一个别名。

1. np.newaxis 的实用

>> x = np.arange(3)
>> x
array([0, 1, 2])
>> x.shape
(3,)

>> x[:, np.newaxis]
array([[0],
    [1],
    [2]])

>> x[:, None]
array([[0],
    [1],
    [2]])

>> x[:, np.newaxis].shape
 (3, 1)

2. 索引多维数组的某一列时返回的是一个行向量

>>> X = np.array([[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12]])
>>> X[:, 1]
array([2, 6, 10])    % 这里是一个行
>>> X[:, 1].shape    % X[:, 1] 的用法完全等同于一个行,而不是一个列,
(3, )

如果我索引多维数组的某一列时,返回的仍然是列的结构,一种正确的索引方式是:

>>>X[:, 1][:, np.newaxis]
array([[2],
   [6],
   [10]])

如果想实现第二列和第四列的拼接(层叠):

>>>X_sub = np.hstack([X[:, 1][:, np.newaxis], X[:, 3][:, np.newaxis]])      
          % hstack:horizontal stack,水平方向上的层叠
>>>X_sub
array([[2, 4]
   [6, 8]
   [10, 12]])

当然更为简单的方式还是使用切片:

>> X[:, [1, 3]]
array([[ 2, 4],
    [ 6, 8],
    [10, 12]])

以上这篇numpy np.newaxis 的实用分享就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

使用python对excle和json互相转换的示例

python 版本:2.7 只是读取excel的话可以直接使用xlrd 1、excle to json 代码如下 # -*-coding:utf8 -*- import xlrd f...

Python的for和break循环结构中使用else语句的技巧

在Python中的while或者for循环之后还可以有else子句,作用是for循环中if条件一直不满足,则最后就执行else语句。 for i in range(5): if i...

基于Django实现日志记录报错信息

这篇文章主要介绍了基于Django实现日志记录报错信息,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下 当服务器500错误的时候,普通日...

在Python的Flask框架下收发电子邮件的教程

 简述 在大多数此类教程中都会不遗余力的介绍如何使用数据库。今天我们对数据库暂且不表,而是来关注另一个在web应用中很重要的特性:如何推送邮件给用户。 在某个轻量级应用中我们可...

Python中的列表知识点汇总

Python list 在介绍 Python tuple 时,我使用了类比的方法,将其比做一个袋子,您可以在袋子中存放不同的东西。Python list 与此非常类似,因此,它的功能与袋...