numpy np.newaxis 的实用分享

yipeiwu_com6年前Python基础

如下所示:

>> type(np.newaxis)
NoneType
>> np.newaxis == None
True

np.newaxis 在使用和功能上等价于 None,其实就是 None 的一个别名。

1. np.newaxis 的实用

>> x = np.arange(3)
>> x
array([0, 1, 2])
>> x.shape
(3,)

>> x[:, np.newaxis]
array([[0],
    [1],
    [2]])

>> x[:, None]
array([[0],
    [1],
    [2]])

>> x[:, np.newaxis].shape
 (3, 1)

2. 索引多维数组的某一列时返回的是一个行向量

>>> X = np.array([[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12]])
>>> X[:, 1]
array([2, 6, 10])    % 这里是一个行
>>> X[:, 1].shape    % X[:, 1] 的用法完全等同于一个行,而不是一个列,
(3, )

如果我索引多维数组的某一列时,返回的仍然是列的结构,一种正确的索引方式是:

>>>X[:, 1][:, np.newaxis]
array([[2],
   [6],
   [10]])

如果想实现第二列和第四列的拼接(层叠):

>>>X_sub = np.hstack([X[:, 1][:, np.newaxis], X[:, 3][:, np.newaxis]])      
          % hstack:horizontal stack,水平方向上的层叠
>>>X_sub
array([[2, 4]
   [6, 8]
   [10, 12]])

当然更为简单的方式还是使用切片:

>> X[:, [1, 3]]
array([[ 2, 4],
    [ 6, 8],
    [10, 12]])

以上这篇numpy np.newaxis 的实用分享就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

django数据关系一对多、多对多模型、自关联的建立

一对多模型 一对多的关系,例如员工跟部门。一个部门有多个员工。那么在django怎么建立这种表关系呢? 其实就是利用外键,在多的一方,字段指定外键即可。例如员工和部门,员工是多,所以在...

python递归计算N!的方法

本文实例讲述了python递归计算N!的方法。分享给大家供大家参考。具体实现方法如下: def factorial(n): if n == 0: return 1 e...

Python简单计算文件MD5值的方法示例

本文实例讲述了Python简单计算文件MD5值的方法。分享给大家供大家参考,具体如下: 一 代码 import sys import hashlib import os.path f...

解决python中使用plot画图,图不显示的问题

解决python中使用plot画图,图不显示的问题

对以下数据画图结果图不显示,修改过程如下 df3 = {'chinese':109, 'American':88, 'German': 66, 'Korea':23, 'Japan'...

python生成不重复随机数和对list乱序的解决方法

andom.sample(list, n)即是从list中随机选取n个不同的元素 # -*- coding: utf-8 -*- import random # 从一个list中...