numpy np.newaxis 的实用分享

yipeiwu_com5年前Python基础

如下所示:

>> type(np.newaxis)
NoneType
>> np.newaxis == None
True

np.newaxis 在使用和功能上等价于 None,其实就是 None 的一个别名。

1. np.newaxis 的实用

>> x = np.arange(3)
>> x
array([0, 1, 2])
>> x.shape
(3,)

>> x[:, np.newaxis]
array([[0],
    [1],
    [2]])

>> x[:, None]
array([[0],
    [1],
    [2]])

>> x[:, np.newaxis].shape
 (3, 1)

2. 索引多维数组的某一列时返回的是一个行向量

>>> X = np.array([[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12]])
>>> X[:, 1]
array([2, 6, 10])    % 这里是一个行
>>> X[:, 1].shape    % X[:, 1] 的用法完全等同于一个行,而不是一个列,
(3, )

如果我索引多维数组的某一列时,返回的仍然是列的结构,一种正确的索引方式是:

>>>X[:, 1][:, np.newaxis]
array([[2],
   [6],
   [10]])

如果想实现第二列和第四列的拼接(层叠):

>>>X_sub = np.hstack([X[:, 1][:, np.newaxis], X[:, 3][:, np.newaxis]])      
          % hstack:horizontal stack,水平方向上的层叠
>>>X_sub
array([[2, 4]
   [6, 8]
   [10, 12]])

当然更为简单的方式还是使用切片:

>> X[:, [1, 3]]
array([[ 2, 4],
    [ 6, 8],
    [10, 12]])

以上这篇numpy np.newaxis 的实用分享就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

numpy中的meshgrid函数的使用

numpy官方文档meshgrid函数帮助文档https://docs.scipy.org/doc/numpy/reference/generated/numpy.meshgrid.ht...

讲解Python3中NumPy数组寻找特定元素下标的两种方法

讲解Python3中NumPy数组寻找特定元素下标的两种方法

引子 Matlab中有一个函数叫做find,可以很方便地寻找数组内特定元素的下标,即:Find indices and values of nonzero elements。 这个函数...

python刷投票的脚本实现代码

原理就是用代理IP去访问投票地址。用到了多线程,速度飞快。 昨晚两个小时就刷了1000多票了,主要是代理IP不好找。 2.7环境下运行 #!/usr/bin/env python...

Python 通过pip安装Django详细介绍

Python 通过pip安装Django详细介绍 经过前面的 Python 包管理工具的学习,接下来我们就要基于前面的知识,来配置 Django 的开发与运行环境。 首先是安装 Djan...

用Python中的turtle模块画图两只小羊方法

用Python中的turtle模块画图两只小羊方法

这两天在一个公众号里看到好玩的turtle库,今天来学习一下。 turtle.circle(radius, extent=None, steps=None) 描述: 以给定半径画圆 参数...