python 中值滤波,椒盐去噪,图片增强实例

yipeiwu_com5年前Python基础

受光照、气候、成像设备等因素的影响,灰度化后的图像存在噪声和模糊干扰,直接影响到下一步的文字识别,因此,需要对图像进行增强处理。图片预处理中重要一环就是椒盐去澡,通常用到中值滤波器进行处理,效果很好。中值滤波器是一种非线性滤波器,其基本原理是把数字图像中某点的值用其领域各点值的中值代替。

如求点[i,j]的灰度值计算方法为:

(1)按灰度值顺序排列[i,j]领域中的像素点;

(2)取排序像素集的中间值作为[i,j]的灰度值。中值滤波技术能有效抑制噪声。

直接上代码,希望给大家有帮助:

import numpy as np
import cv2
import tensorflow as tf
from PIL import Image
import os
import scipy.signal as signal

input_images = np.zeros((300, 300))
filename = "D:\字母图库\F\P80627-112853.jpg"
print(filename)
img = Image.open(filename).resize((300, 300)).convert('L')
width = img.size[0]
height = img.size[1]

for h in range(0, height):
  for w in range(0, width):
    if img.getpixel((h, w)) < 128:
      input_images[w, h] = 0
    else:
      input_images[w, h] = 1
cv2.imshow("test1111", input_images)

data = signal.medfilt2d(np.array(img), kernel_size=3) # 二维中值滤波
for h in range(0, height):
  for w in range(0, width):
    if data[h][w] < 128:
      input_images[w, h] = 0
    else:
      input_images[w, h] = 1
cv2.imshow("test2222", input_images)

data = signal.medfilt2d(np.array(img), kernel_size=5) # 二维中值滤波
for h in range(0, height):
  for w in range(0, width):
    if data[h][w] < 128:
      input_images[w, h] = 0
    else:
      input_images[w, h] = 1
cv2.imshow("test3333", input_images)
cv2.waitKey(0)

以上这篇python 中值滤波,椒盐去噪,图片增强实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

python安装pil库方法及代码

python安装pil库方法及代码

安装PIL 在Debian/Ubuntu Linux下直接通过apt安装: $ sudo apt-get install python-imaging Mac和其他版本的Linux...

python访问纯真IP数据库的代码

核心代码: #!/usr/bin/env python # -*- coding: utf-8 -*- from bisect import bisect _LIST1,...

Python 装饰器实现DRY(不重复代码)原则

Python装饰器是一个消除冗余的强大工具。随着将功能模块化为大小合适的方法,即使是最复杂的工作流,装饰器也能使它变成简洁的功能。 例如让我们看看Django web框架,该框架处理请求...

基于Python3.6+splinter实现自动抢火车票

本文实例为大家分享了python实现自动抢火车票,供大家参考,具体内容如下 splinter使用 首先介绍一下splinter使用: plinter.brower是一个开源工具,通过Py...

Python3读取UTF-8文件及统计文件行数的方法

本文实例讲述了Python3读取UTF-8文件及统计文件行数的方法。分享给大家供大家参考。具体实现方法如下: ''''' Created on Dec 21, 2012 Pyth...