基于python及pytorch中乘法的使用详解

yipeiwu_com5年前Python基础

numpy中的乘法

A = np.array([[1, 2, 3], [2, 3, 4]])
B = np.array([[1, 0, 1], [2, 1, -1]])
C = np.array([[1, 0], [0, 1], [-1, 0]])
 
A * B : # 对应位置相乘
np.array([[ 1, 0, 3], [ 4, 3, -4]]) 
 
A.dot(B) :  # 矩阵乘法 
ValueError: shapes (2,3) and (2,3) not aligned: 3 (dim 1) != 2 (dim 0)
 
A.dot(C) : # 矩阵乘法  | < -- > np.dot(A, C)
np.array([[-2, 2],[-2, 3]])

总结 : 在numpy中,*表示为两个数组对应位置相乘; dot表示两个数组进行矩阵乘法

pytorch中的乘法

A = torch.tensor([[1, 2, 3], [2, 3, 4]])
B = torch.tensor([[1, 0, 1], [2, 1, -1]])
C = torch.tensor([[1, 0], [0, 1], [-1, 0]])
 
# 矩阵乘法
torch.mm(mat1, mat2, out=None) <--> torch.matmul(mat1, mat2, out=None)
eg : 
  torch.mm(A, B)   : RuntimeError: size mismatch, m1: [2 x 3], m2: [2 x 3]
  torch.mm(A, C)   : tensor([[-2, 2], [-2, 3]])
  torch.matmul(A, C) : tensor([[-2, 2], [-2, 3]])
 
# 点乘
torch.mul(mat1, mat2, out=None)
 
eg :
  torch.mul(A, B) : tensor([[ 1, 0, 3], [ 4, 3, -4]])
  torch.mul(A, C) : RuntimeError: The size of tensor a (3) must match the size of tensor b (2) at non-singleton dimension 1

总结 : 在pytorch中,mul表示为两个数组对应位置相乘; mm和matmul表示两个数组进行矩阵乘法

以上这篇基于python及pytorch中乘法的使用详解就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

在Windows8上的搭建Python和Django环境

在Windows8上的搭建Python和Django环境

先从搭建环境开始。作为一个Python初学者来说,一个趁手的编译器是很重要的,本想用VS来开发Python,但是感觉实际开发中没有几家公司会用VS来开发Python,没办法就换成了MyE...

彻底理解Python list切片原理

关于list的insert函数 list#insert(ind,value)在ind元素前面插入value 首先对ind进行预处理:如果ind<0,则ind+=len(a),这样...

Python中字符串格式化str.format的详细介绍

前言 Python 在 2.6 版本中新加了一个字符串格式化方法: str.format() 。它的基本语法是通过 {} 和 : 来代替以前的 %.。 格式化时的占位符语法: rep...

重命名批处理python脚本

将Copy of ********.bmp或者Copy of Copy of ********.bmp 此类文件统一命名为********0.bmp 或者********00.bmp等格式...

python实现kNN算法

python实现kNN算法

kNN(k-nearest neighbor)是一种基本的分类与回归的算法。这里我们先只讨论分类中的kNN算法。 k邻近算法的输入为实例的特征向量,对对应于特征空间中的点;输出为实例的...