基于python及pytorch中乘法的使用详解

yipeiwu_com6年前Python基础

numpy中的乘法

A = np.array([[1, 2, 3], [2, 3, 4]])
B = np.array([[1, 0, 1], [2, 1, -1]])
C = np.array([[1, 0], [0, 1], [-1, 0]])
 
A * B : # 对应位置相乘
np.array([[ 1, 0, 3], [ 4, 3, -4]]) 
 
A.dot(B) :  # 矩阵乘法 
ValueError: shapes (2,3) and (2,3) not aligned: 3 (dim 1) != 2 (dim 0)
 
A.dot(C) : # 矩阵乘法  | < -- > np.dot(A, C)
np.array([[-2, 2],[-2, 3]])

总结 : 在numpy中,*表示为两个数组对应位置相乘; dot表示两个数组进行矩阵乘法

pytorch中的乘法

A = torch.tensor([[1, 2, 3], [2, 3, 4]])
B = torch.tensor([[1, 0, 1], [2, 1, -1]])
C = torch.tensor([[1, 0], [0, 1], [-1, 0]])
 
# 矩阵乘法
torch.mm(mat1, mat2, out=None) <--> torch.matmul(mat1, mat2, out=None)
eg : 
  torch.mm(A, B)   : RuntimeError: size mismatch, m1: [2 x 3], m2: [2 x 3]
  torch.mm(A, C)   : tensor([[-2, 2], [-2, 3]])
  torch.matmul(A, C) : tensor([[-2, 2], [-2, 3]])
 
# 点乘
torch.mul(mat1, mat2, out=None)
 
eg :
  torch.mul(A, B) : tensor([[ 1, 0, 3], [ 4, 3, -4]])
  torch.mul(A, C) : RuntimeError: The size of tensor a (3) must match the size of tensor b (2) at non-singleton dimension 1

总结 : 在pytorch中,mul表示为两个数组对应位置相乘; mm和matmul表示两个数组进行矩阵乘法

以上这篇基于python及pytorch中乘法的使用详解就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

Windows下python2.7.8安装图文教程

Windows下python2.7.8安装图文教程

本文为大家分享了python2.7.8安装图文教程,供大家参考,具体内容如下 1、进入python的官方网站下载:https://www.python.org/,点击Download,选...

python写的ARP攻击代码实例

注:使用这个脚本需要安装scapy 包最好在linux平台下使用,因为scapy包在windows上安装老是会有各种问题 复制代码 代码如下:#coding:utf-8#example...

python使用for循环计算0-100的整数的和方法

如下所示: #创建一个变量初始化为0 sum = 0 #调用range()函数创建一个有序数列并通过for循环遍历数列 for n in range (101) : #将遍历的数列...

PyQt5实现拖放功能

PyQt5实现拖放功能

在这节教程中,我们将探讨PyQt5中的拖放操作。 在计算机图形用户界面(GUI)中,拖放是在某个虚拟对象上点击并拖动到另一个位置或虚拟对象上的操作。它通常用于调用多个动作,或为两个抽象对...

用openCV和Python 实现图片对比,并标识出不同点的方式

用openCV和Python 实现图片对比,并标识出不同点的方式

最近项目中需要实现两组图片对比,并能将两者的区别标识出来。 在网上搜索一大堆找到一篇大神的文章,最终实现该功能,在这里记录下: 想要实现此demo,首先我们得确保电脑上已安装 openC...