基于python及pytorch中乘法的使用详解

yipeiwu_com5年前Python基础

numpy中的乘法

A = np.array([[1, 2, 3], [2, 3, 4]])
B = np.array([[1, 0, 1], [2, 1, -1]])
C = np.array([[1, 0], [0, 1], [-1, 0]])
 
A * B : # 对应位置相乘
np.array([[ 1, 0, 3], [ 4, 3, -4]]) 
 
A.dot(B) :  # 矩阵乘法 
ValueError: shapes (2,3) and (2,3) not aligned: 3 (dim 1) != 2 (dim 0)
 
A.dot(C) : # 矩阵乘法  | < -- > np.dot(A, C)
np.array([[-2, 2],[-2, 3]])

总结 : 在numpy中,*表示为两个数组对应位置相乘; dot表示两个数组进行矩阵乘法

pytorch中的乘法

A = torch.tensor([[1, 2, 3], [2, 3, 4]])
B = torch.tensor([[1, 0, 1], [2, 1, -1]])
C = torch.tensor([[1, 0], [0, 1], [-1, 0]])
 
# 矩阵乘法
torch.mm(mat1, mat2, out=None) <--> torch.matmul(mat1, mat2, out=None)
eg : 
  torch.mm(A, B)   : RuntimeError: size mismatch, m1: [2 x 3], m2: [2 x 3]
  torch.mm(A, C)   : tensor([[-2, 2], [-2, 3]])
  torch.matmul(A, C) : tensor([[-2, 2], [-2, 3]])
 
# 点乘
torch.mul(mat1, mat2, out=None)
 
eg :
  torch.mul(A, B) : tensor([[ 1, 0, 3], [ 4, 3, -4]])
  torch.mul(A, C) : RuntimeError: The size of tensor a (3) must match the size of tensor b (2) at non-singleton dimension 1

总结 : 在pytorch中,mul表示为两个数组对应位置相乘; mm和matmul表示两个数组进行矩阵乘法

以上这篇基于python及pytorch中乘法的使用详解就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

Python进阶学习之特殊方法实例详析

前言 最近在学习python,学习到了一个之前没接触过的--特殊方法。 什么是特殊方法?当我们在设计一个类的时候,python中有一个用于初始化的方法$__init__$,类似于java...

python实现简单加密解密机制

本文使用python实现一个简单的加密解密机制。 描述:结合26个字母、以一个单词作为秘钥,使用python实现简单的加密解密机制 秘钥:大写的英文字符串 明文:包含空格、大小写字母、数...

pandas 缺失值与空值处理的实现方法

pandas 缺失值与空值处理的实现方法

1.相关函数 df.dropna() df.fillna() df.isnull() df.isna() 2.相关概念 空值:在pandas中的空值是"" 缺失值:在...

Python3实现转换Image图片格式

前言 首先图片格式转换的方法有很多,但是转二进制字节流的,我搜了一下午终于在 stackoverflow上搜到了 说一下为什么要在线转这个图片格式 额,一名Python3 spid...

Flask框架重定向,错误显示,Responses响应及Sessions会话操作示例

本文实例讲述了Flask框架重定向,错误显示,Responses响应及Sessions会话操作。分享给大家供大家参考,具体如下: 重定向和错误显示 将用户重定向到另一个端点,使用redi...