基于python及pytorch中乘法的使用详解

yipeiwu_com6年前Python基础

numpy中的乘法

A = np.array([[1, 2, 3], [2, 3, 4]])
B = np.array([[1, 0, 1], [2, 1, -1]])
C = np.array([[1, 0], [0, 1], [-1, 0]])
 
A * B : # 对应位置相乘
np.array([[ 1, 0, 3], [ 4, 3, -4]]) 
 
A.dot(B) :  # 矩阵乘法 
ValueError: shapes (2,3) and (2,3) not aligned: 3 (dim 1) != 2 (dim 0)
 
A.dot(C) : # 矩阵乘法  | < -- > np.dot(A, C)
np.array([[-2, 2],[-2, 3]])

总结 : 在numpy中,*表示为两个数组对应位置相乘; dot表示两个数组进行矩阵乘法

pytorch中的乘法

A = torch.tensor([[1, 2, 3], [2, 3, 4]])
B = torch.tensor([[1, 0, 1], [2, 1, -1]])
C = torch.tensor([[1, 0], [0, 1], [-1, 0]])
 
# 矩阵乘法
torch.mm(mat1, mat2, out=None) <--> torch.matmul(mat1, mat2, out=None)
eg : 
  torch.mm(A, B)   : RuntimeError: size mismatch, m1: [2 x 3], m2: [2 x 3]
  torch.mm(A, C)   : tensor([[-2, 2], [-2, 3]])
  torch.matmul(A, C) : tensor([[-2, 2], [-2, 3]])
 
# 点乘
torch.mul(mat1, mat2, out=None)
 
eg :
  torch.mul(A, B) : tensor([[ 1, 0, 3], [ 4, 3, -4]])
  torch.mul(A, C) : RuntimeError: The size of tensor a (3) must match the size of tensor b (2) at non-singleton dimension 1

总结 : 在pytorch中,mul表示为两个数组对应位置相乘; mm和matmul表示两个数组进行矩阵乘法

以上这篇基于python及pytorch中乘法的使用详解就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

详解Django-channels 实现WebSocket实例

引入 先安装三个模块 pip install channels pip install channels_redis pip install pywin32 创建一个Dja...

python使用pil生成图片验证码的方法

本文实例讲述了python使用pil生成图片验证码的方法。分享给大家供大家参考。具体实现方法如下: # -*- coding: utf-8 -*- #导入三个模块 import Im...

Python 变量类型及命名规则介绍

首字母为英文和下划线,其它部分则可以是英文、数字和下划线(即:_),而变量名称是区分大小写,即变量temp与Temp为不同变量。变量的基本用法如下: 复制代码 代码如下:# 例:使用变...

python中from module import * 的一个坑

但还有另外一个问题 - 你以为你修改了某个变量,其实,被from module import *后的那个并没有被更新,非常危险,因为程序有可能还可以正常运行, 只不过结果错了,到了pro...

在Django的模板中使用认证数据的方法

当前登入的用户以及他(她)的权限可以通过 RequestContext 在模板的context中使用。 注意 从技术上来说,只有当你使用了 RequestContext这些变量才可用。...