基于python及pytorch中乘法的使用详解

yipeiwu_com6年前Python基础

numpy中的乘法

A = np.array([[1, 2, 3], [2, 3, 4]])
B = np.array([[1, 0, 1], [2, 1, -1]])
C = np.array([[1, 0], [0, 1], [-1, 0]])
 
A * B : # 对应位置相乘
np.array([[ 1, 0, 3], [ 4, 3, -4]]) 
 
A.dot(B) :  # 矩阵乘法 
ValueError: shapes (2,3) and (2,3) not aligned: 3 (dim 1) != 2 (dim 0)
 
A.dot(C) : # 矩阵乘法  | < -- > np.dot(A, C)
np.array([[-2, 2],[-2, 3]])

总结 : 在numpy中,*表示为两个数组对应位置相乘; dot表示两个数组进行矩阵乘法

pytorch中的乘法

A = torch.tensor([[1, 2, 3], [2, 3, 4]])
B = torch.tensor([[1, 0, 1], [2, 1, -1]])
C = torch.tensor([[1, 0], [0, 1], [-1, 0]])
 
# 矩阵乘法
torch.mm(mat1, mat2, out=None) <--> torch.matmul(mat1, mat2, out=None)
eg : 
  torch.mm(A, B)   : RuntimeError: size mismatch, m1: [2 x 3], m2: [2 x 3]
  torch.mm(A, C)   : tensor([[-2, 2], [-2, 3]])
  torch.matmul(A, C) : tensor([[-2, 2], [-2, 3]])
 
# 点乘
torch.mul(mat1, mat2, out=None)
 
eg :
  torch.mul(A, B) : tensor([[ 1, 0, 3], [ 4, 3, -4]])
  torch.mul(A, C) : RuntimeError: The size of tensor a (3) must match the size of tensor b (2) at non-singleton dimension 1

总结 : 在pytorch中,mul表示为两个数组对应位置相乘; mm和matmul表示两个数组进行矩阵乘法

以上这篇基于python及pytorch中乘法的使用详解就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

Python为何不能用可变对象作为默认参数的值

Python为何不能用可变对象作为默认参数的值

先来看一道题目: >>> def func(numbers=[], num=1): ... numbers.append(num) ... return numbe...

Python 加密的实例详解

 Python 加密的实例详解 hashlib支持md5,sha1,sha256,sha384,sha512,用法和md5一样  import hashlib...

pandas-resample按时间聚合实例

pandas-resample按时间聚合实例

如下所示: import pandas as pd #如果需要的话,需将df中的date列转为datetime df.date = pd.to_datetime(df.date,...

python获得linux下所有挂载点(mount points)的方法

本文实例讲述了python获得linux下所有挂载点(mount points)的方法。分享给大家供大家参考。具体实现方法如下: # execute the external "mo...

python占位符输入方式实例

占位符,顾名思义就是插在输出里站位的符号。占位符是绝大部分编程语言都存在的语法, 而且大部分都是相通的, 它是一种非常常用的字符串格式化的方式。 1、常用占位符的含义 s : 获取传入...