基于python及pytorch中乘法的使用详解

yipeiwu_com6年前Python基础

numpy中的乘法

A = np.array([[1, 2, 3], [2, 3, 4]])
B = np.array([[1, 0, 1], [2, 1, -1]])
C = np.array([[1, 0], [0, 1], [-1, 0]])
 
A * B : # 对应位置相乘
np.array([[ 1, 0, 3], [ 4, 3, -4]]) 
 
A.dot(B) :  # 矩阵乘法 
ValueError: shapes (2,3) and (2,3) not aligned: 3 (dim 1) != 2 (dim 0)
 
A.dot(C) : # 矩阵乘法  | < -- > np.dot(A, C)
np.array([[-2, 2],[-2, 3]])

总结 : 在numpy中,*表示为两个数组对应位置相乘; dot表示两个数组进行矩阵乘法

pytorch中的乘法

A = torch.tensor([[1, 2, 3], [2, 3, 4]])
B = torch.tensor([[1, 0, 1], [2, 1, -1]])
C = torch.tensor([[1, 0], [0, 1], [-1, 0]])
 
# 矩阵乘法
torch.mm(mat1, mat2, out=None) <--> torch.matmul(mat1, mat2, out=None)
eg : 
  torch.mm(A, B)   : RuntimeError: size mismatch, m1: [2 x 3], m2: [2 x 3]
  torch.mm(A, C)   : tensor([[-2, 2], [-2, 3]])
  torch.matmul(A, C) : tensor([[-2, 2], [-2, 3]])
 
# 点乘
torch.mul(mat1, mat2, out=None)
 
eg :
  torch.mul(A, B) : tensor([[ 1, 0, 3], [ 4, 3, -4]])
  torch.mul(A, C) : RuntimeError: The size of tensor a (3) must match the size of tensor b (2) at non-singleton dimension 1

总结 : 在pytorch中,mul表示为两个数组对应位置相乘; mm和matmul表示两个数组进行矩阵乘法

以上这篇基于python及pytorch中乘法的使用详解就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

python 实现二维列表转置

python 二维列表转置 def transpose(self, matrix): new_matrix = [] for i in range(len(matri...

Django框架实现的普通登录案例【使用POST方法】

Django框架实现的普通登录案例【使用POST方法】

本文实例讲述了Django框架实现的普通登录。分享给大家供大家参考,具体如下: 1.显示登录页面 a.设计url,通过浏览器访问http://127.0.0.1:8000//login的...

python itchat实现调用微信接口的第三方模块方法

itchat是一个开源的微信个人号接口,使用python调用微信从未如此简单。 使用不到三十行的代码,你就可以完成一个能够处理所有信息的微信机器人。 当然,该api的使用远不止一个机器人...

Python绘制堆叠柱状图的实例

Python绘制堆叠柱状图的实例

有个朋友要求帮忙绘制堆叠柱状图,查阅了一些文档之后也算是完成了,只是一个小demo,下面我就记录一下。 1.什么是堆叠柱状图 与并排显示分类的分组柱状图不同,堆叠柱状图将每个柱子进行分割...

Python变量访问权限控制详解

Python变量访问权限控制详解

oop1.py文件代码 # user/bin/python class Foo: def bar(self): print('ok') def hello(self, name):...