Pytorch之Variable的用法

yipeiwu_com6年前Python基础

1.简介

torch.autograd.Variable是Autograd的核心类,它封装了Tensor,并整合了反向传播的相关实现

Variable和tensor的区别和联系

Variable是篮子,而tensor是鸡蛋,鸡蛋应该放在篮子里才能方便拿走(定义variable时一个参数就是tensor)

Variable这个篮子里除了装了tensor外还有requires_grad参数,表示是否需要对其求导,默认为False

Variable这个篮子呢,自身有一些属性

比如grad,梯度variable.grad是d(y)/d(variable)保存的是变量y对variable变量的梯度值,如果requires_grad参数为False,所以variable.grad返回值为None,如果为True,返回值就为对variable的梯度值

比如grad_fn,对于用户自己创建的变量(Variable())grad_fn是为none的,也就是不能调用backward函数,但对于由计算生成的变量,如果存在一个生成中间变量的requires_grad为true,那其的grad_fn不为none,反则为none

比如data,这个就很简单,这个属性就是装的鸡蛋(tensor)

Varibale包含三个属性:

data:存储了Tensor,是本体的数据 grad:保存了data的梯度,本事是个Variable而非Tensor,与data形状一致 grad_fn:指向Function对象,用于反向传播的梯度计算之用

代码1

import numpy as np
import torch
from torch.autograd import Variable
 
x = Variable(torch.ones(2,2),requires_grad = False)
temp = Variable(torch.zeros(2,2),requires_grad = True)
 
y = x + temp + 2
y = y.mean() #求平均数
 
y.backward() #反向传递函数,用于求y对前面的变量(x)的梯度
print(x.grad) # d(y)/d(x)

输出1

none

(因为requires_grad=False)

代码2

import numpy as np
import torch
from torch.autograd import Variable
 
x = Variable(torch.ones(2,2),requires_grad = False)
temp = Variable(torch.zeros(2,2),requires_grad = True)
 
 
y = x + temp + 2
y = y.mean() #求平均数
 
y.backward() #反向传递函数,用于求y对前面的变量(x)的梯度
print(temp.grad) # d(y)/d(temp)

输出2

tensor([[0.2500, 0.2500],
[0.2500, 0.2500]])

代码3

import numpy as np
import torch
from torch.autograd import Variable
 
x = Variable(torch.ones(2,2),requires_grad = False)
temp = Variable(torch.zeros(2,2),requires_grad = True)
 
 
y = x + 2
y = y.mean() #求平均数
 
y.backward() #反向传递函数,用于求y对前面的变量(x)的梯度
print(x.grad) # d(y)/d(x)

输出3

Traceback (most recent call last):
File "path", line 12, in <module>
y.backward()

(报错了,因为生成变量y的中间变量只有x,而x的requires_grad是False,所以y的grad_fn是none)

代码4

import numpy as np
import torch
from torch.autograd import Variable
 
x = Variable(torch.ones(2,2),requires_grad = False)
temp = Variable(torch.zeros(2,2),requires_grad = True)
 
 
y = x + 2
y = y.mean() #求平均数
 
#y.backward() #反向传递函数,用于求y对前面的变量(x)的梯度
print(y.grad_fn) # d(y)/d(x)

输出4

none

2.grad属性

在每次backward后,grad值是会累加的,所以利用BP算法,每次迭代是需要将grad清零的。

x.grad.data.zero_()

(in-place操作需要加上_,即zero_)

以上这篇Pytorch之Variable的用法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

pygame游戏之旅 添加碰撞效果的方法

pygame游戏之旅 添加碰撞效果的方法

本文为大家分享了pygame游戏之旅的第7篇,供大家参考,具体内容如下 对car和障碍的宽高进行比较然后打印即可: if y < thing_starty + thing_he...

pygame实现俄罗斯方块游戏(AI篇1)

pygame实现俄罗斯方块游戏(AI篇1)

上次更新到pygame实现俄罗斯方块游戏(基础篇3) 现在继续 一、定义玩家类 定义玩家类是为了便于进行手动和机器模式或各种不同机器人模式的混合使用,增加代码扩展性。 可以先定义一个玩家...

DES加密解密算法之python实现版(图文并茂)

DES加密解密算法之python实现版(图文并茂)

一、DSE算法背景介绍 1. DES的采用 1979年,美国银行协会批准使用 1980年,美国国家标准局(ANSI)赞同DES作为私人使用的标准,称之为DEA(ANSI X.392) 1...

python实现单目标、多目标、多尺度、自定义特征的KCF跟踪算法(实例代码)

单目标跟踪: 直接调用opencv中封装的tracker即可。 #!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created...

Python去除字符串前后空格的几种方法

其实如果要去除字符串前后的空格很简单,那就是用strip(),简单方便 >>> ' A BC '.strip() 'A BC' 如果不允许用strip()的方法,...