Python中bisect的使用方法

yipeiwu_com5年前Python基础

Python中列表(list)的实现其实是一个数组,当要查找某一个元素的时候时间复杂度是O(n),使用list.index()方法,但是随着数据量的上升,list.index()的性能也逐步下降,所以我们需要使用bisect模块来进行二分查找,前提我们的列表是一个有序的列表。

递归二分查找和循环二分查找

def binary_search_recursion(lst, val, start, end):
  if start > end:
    return None
  mid = (start + end) // 2
  if lst[mid] < val:
    return binary_search_recursion(lst, val, mid + 1, end)
  if lst[mid] > val:
    return binary_search_recursion(lst, val, start, mid - 1)
  return mid
 
 
def binary_search_loop(lst, val):
  start, end = 0, len(lst) - 1
  while start <= end:
    mid = (start + end) // 2
    if lst[mid] < val:
      start = mid + 1
    elif lst[mid] > val:
      end = mid - 1
    else:
      return mid
  return None

为了比对一下两者的性能,我们使用timeit模块来测试两个方法执行,timeit模块的timeit方法默认会对需要测试的函数执行1000000,然后返回执行的时间。

>>> import random
>>> from random import randint
>>> from random import choice
>>> random.seed(5)
>>> lst = [randint(1, 100) for _ in range(500000)]
>>> lst.sort()
>>> val = choice(lst)
>>> val
6
>>> def test_recursion():
...   return binary_search_recursion(lst, val, 0, len(lst) - 1)
...
>>> def test_loop():
...   return binary_search_loop(lst, val)
...
>>> import timeit
>>> t1 = timeit.timeit("test_recursion()", setup="from __main__ import test_recursion")
>>> t1
3.9838006450511045
>>> t2 = timeit.timeit("test_loop()", setup="from __main__ import test_loop")
>>> t2
2.749765167240339

可以看到,循环二分查找比递归二分查找性能要来的好些。现在,我们先用bisect的二分查找测试一下性能

用bisect来搜索

>>> import bisect
>>> def binary_search_bisect(lst, val):
...   i = bisect.bisect(lst, val)
...   if i != len(lst) and lst[i] == val:
...     return i
...   return None
...
>>> def test_bisect():
...   return binary_search_bisect(lst, val)
...
>>> t3 = timeit.timeit("test_bisect()", setup="from __main__ import test_bisect")
>>> t3
1.3453236258177412

对比之前,我们可以看到用bisect模块的二分查找的性能比循环二分查找快一倍。再来对比一下,如果用Python原生的list.index()的性能

>>> def test_index():
...   return lst.index(val)
...
>>> t4 = timeit.timeit("test_index()", setup="from __main__ import test_index")
>>> t4
518.1656223725007

可以看到,如果用Python原生的list.index()执行1000000,需要500秒,相比之前的二分查找,性能简直慢到恐怖

用bisect.insort插入新元素

排序很耗时,因此在得到一个有序序列之后,我们最好能够保持它的有序。bisect.insort就是为这个而存在的

insort(seq, item)把变量item插入到序列seq中,并能保持seq的升序顺序

import random
from random import randint
import bisect
 
lst = []
SIZE = 10
random.seed(5)
for _ in range(SIZE):
  item = randint(1, SIZE)
  bisect.insort(lst, item)
  print('%2d ->' % item, lst)

输出:

10 -> [10]
 5 -> [5, 10]
 6 -> [5, 6, 10]
 9 -> [5, 6, 9, 10]
 1 -> [1, 5, 6, 9, 10]
 8 -> [1, 5, 6, 8, 9, 10]
 4 -> [1, 4, 5, 6, 8, 9, 10]
 1 -> [1, 1, 4, 5, 6, 8, 9, 10]
 3 -> [1, 1, 3, 4, 5, 6, 8, 9, 10]
 2 -> [1, 1, 2, 3, 4, 5, 6, 8, 9, 10]

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

pytorch中获取模型input/output shape实例

Pytorch官方目前无法像tensorflow, caffe那样直接给出shape信息,详见 https://github.com/pytorch/pytorch/pull/3043...

Python实现TCP探测目标服务路由轨迹的原理与方法详解

Python实现TCP探测目标服务路由轨迹的原理与方法详解

本文实例讲述了Python实现TCP探测目标服务路由轨迹的原理与方法。分享给大家供大家参考,具体如下: 一 点睛 在此次实践中,通过scapy的traceroute()方法实现探测机到目...

使用Python设计一个代码统计工具

问题 设计一个程序,用于统计一个项目中的代码行数,包括文件个数,代码行数,注释行数,空行行数。尽量设计灵活一点可以通过输入不同参数来统计不同语言的项目,例如: # type用于指定文...

编写Python脚本批量下载DesktopNexus壁纸的教程

DesktopNexus 是我最喜爱的一个壁纸下载网站,上面有许多高质量的壁纸,几乎每天必上, 每月也必会坚持分享我这个月来收集的壁纸 但是 DesktopNexus 壁纸的下载很麻烦,...

在Python中,不用while和for循环遍历列表的实例

如下所示: a = [1, 2, 3, 8, 9] def printlist(l, index): if index == len(l): return else:...