Pandas之Fillna填充缺失数据的方法

yipeiwu_com6年前Python基础

约定:

import pandas as pd
import numpy as np
from numpy import nan as NaN

填充缺失数据

fillna()是最主要的处理方式了。

df1=pd.DataFrame([[1,2,3],[NaN,NaN,2],[NaN,NaN,NaN],[8,8,NaN]])
df1

代码结果:

0 1 2
0 1.0 2.0 3.0
1 NaN NaN 2.0
2 NaN NaN NaN
3 8.0 8.0 NaN

用常数填充:

df1.fillna(100)

代码结果:

0 1 2
0 1.0 2.0 3.0
1 100.0 100.0 2.0
2 100.0 100.0 100.0
3 8.0 8.0 100.0

通过字典填充不同的常数:

df1.fillna({0:10,1:20,2:30})

代码结果:

0 1 2
0 1.0 2.0 3.0
1 10.0 20.0 2.0
2 10.0 20.0 30.0
3 8.0 8.0 30.0

传入inplace=True直接修改原对象:

df1.fillna(0,inplace=True)
df1

代码结果:

0 1 2
0 1.0 2.0 3.0
1 0.0 0.0 2.0
2 0.0 0.0 0.0
3 8.0 8.0 0.0

传入method=” “改变插值方式:

df2=pd.DataFrame(np.random.randint(0,10,(5,5)))
df2.iloc[1:4,3]=NaN;df2.iloc[2:4,4]=NaN
df2

代码结果:

0 1 2 3 4
0 6 6 2 4.0 1.0
1 4 7 0 NaN 5.0
2 6 5 5 NaN NaN
3 1 9 9 NaN NaN
4 4 8 1 5.0 9.0

df2.fillna(method='ffill')#用前面的值来填充

代码结果:

0 1 2 3 4
0 6 6 2 4.0 1.0
1 4 7 0 4.0 5.0
2 6 5 5 4.0 5.0
3 1 9 9 4.0 5.0
4 4 8 1 5.0 9.0

传入limit=” “限制填充个数:

df2.fillna(method='bfill',limit=2)

代码结果:

0 1 2 3 4
0 6 6 2 4.0 1.0
1 4 7 0 NaN 5.0
2 6 5 5 5.0 9.0
3 1 9 9 5.0 9.0
4 4 8 1 5.0 9.0

传入axis=” “修改填充方向:

df2.fillna(method="ffill",limit=1,axis=1)

代码结果:

0 1 2 3 4
0 6.0 6.0 2.0 4.0 1.0
1 4.0 7.0 0.0 0.0 5.0
2 6.0 5.0 5.0 5.0 NaN
3 1.0 9.0 9.0 9.0 NaN
4 4.0 8.0 1.0 5.0 9.0

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

python使用os.listdir和os.walk获得文件的路径的方法

本文介绍了python使用os.listdir和os.walk获得文件的路径的方法,分享给大家。具体如下: os.listdir() 方法用于返回指定的文件夹包含的文件或文件夹的名字的...

python数据结构之线性表的顺序存储结构

用Python仿照C语言来实现线性表的顺序存储结构,供大家参考,具体内容如下 本文所采用的数据结构模板为 《数据结构教程》C语言版,李春葆、尹为民等著。 该篇所涉及到的是线性表的顺序存...

python之pymysql模块简单应用示例代码

众所周知,想要在python程序中执行SQL语句需要使用第三方模块:pymysql。 下面,我将为大家简述一下pymysql第三方库的安装到使用的大体流程。 pymysql的安装 1....

初探TensorFLow从文件读取图片的四种方式

本文记录一下TensorFLow的几种图片读取方法,官方文档有较为全面的介绍。 1.使用gfile读图片,decode输出是Tensor,eval后是ndarray import...

Python中%是什么意思?python中百分号如何使用?

常见的两种 第一种:数值运算 1 % 3 是指模运算, 取余数(remainder) >>> 7%2 1 # -*- coding: utf-8 -*...