Pandas之Fillna填充缺失数据的方法

yipeiwu_com6年前Python基础

约定:

import pandas as pd
import numpy as np
from numpy import nan as NaN

填充缺失数据

fillna()是最主要的处理方式了。

df1=pd.DataFrame([[1,2,3],[NaN,NaN,2],[NaN,NaN,NaN],[8,8,NaN]])
df1

代码结果:

0 1 2
0 1.0 2.0 3.0
1 NaN NaN 2.0
2 NaN NaN NaN
3 8.0 8.0 NaN

用常数填充:

df1.fillna(100)

代码结果:

0 1 2
0 1.0 2.0 3.0
1 100.0 100.0 2.0
2 100.0 100.0 100.0
3 8.0 8.0 100.0

通过字典填充不同的常数:

df1.fillna({0:10,1:20,2:30})

代码结果:

0 1 2
0 1.0 2.0 3.0
1 10.0 20.0 2.0
2 10.0 20.0 30.0
3 8.0 8.0 30.0

传入inplace=True直接修改原对象:

df1.fillna(0,inplace=True)
df1

代码结果:

0 1 2
0 1.0 2.0 3.0
1 0.0 0.0 2.0
2 0.0 0.0 0.0
3 8.0 8.0 0.0

传入method=” “改变插值方式:

df2=pd.DataFrame(np.random.randint(0,10,(5,5)))
df2.iloc[1:4,3]=NaN;df2.iloc[2:4,4]=NaN
df2

代码结果:

0 1 2 3 4
0 6 6 2 4.0 1.0
1 4 7 0 NaN 5.0
2 6 5 5 NaN NaN
3 1 9 9 NaN NaN
4 4 8 1 5.0 9.0

df2.fillna(method='ffill')#用前面的值来填充

代码结果:

0 1 2 3 4
0 6 6 2 4.0 1.0
1 4 7 0 4.0 5.0
2 6 5 5 4.0 5.0
3 1 9 9 4.0 5.0
4 4 8 1 5.0 9.0

传入limit=” “限制填充个数:

df2.fillna(method='bfill',limit=2)

代码结果:

0 1 2 3 4
0 6 6 2 4.0 1.0
1 4 7 0 NaN 5.0
2 6 5 5 5.0 9.0
3 1 9 9 5.0 9.0
4 4 8 1 5.0 9.0

传入axis=” “修改填充方向:

df2.fillna(method="ffill",limit=1,axis=1)

代码结果:

0 1 2 3 4
0 6.0 6.0 2.0 4.0 1.0
1 4.0 7.0 0.0 0.0 5.0
2 6.0 5.0 5.0 5.0 NaN
3 1.0 9.0 9.0 9.0 NaN
4 4.0 8.0 1.0 5.0 9.0

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

Python GUI编程完整示例

Python GUI编程完整示例

本文实例讲述了Python GUI编程。分享给大家供大家参考,具体如下: import os from time import sleep from tkinter import *...

python logging日志模块以及多进程日志详解

本篇文章主要对 python logging 的介绍加深理解。更主要是 讨论在多进程环境下如何使用logging 来输出日志, 如何安全地切分日志文件。 1. logging日志模块介绍...

Python计算已经过去多少个周末的方法

本文实例讲述了Python计算已经过去多少个周末的方法。分享给大家供大家参考。具体如下: def weekends_between(d1,d2): days_between =...

Python求正态分布曲线下面积实例

Python求正态分布曲线下面积实例

正态分布应用最广泛的连续概率分布,其特征是“钟”形曲线。这种分布的概率密度函数为: 其中,μ为均值,σ为标准差。 求正态分布曲线下面积有3σ原则: 正态曲线下,横轴区间(μ-σ,μ+...

基于Python获取照片的GPS位置信息

基于Python获取照片的GPS位置信息

这篇文章主要介绍了基于Python获取照片的GPS位置信息,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下 昨天听人说,用手机拍照会带着...