Pandas之Fillna填充缺失数据的方法

yipeiwu_com6年前Python基础

约定:

import pandas as pd
import numpy as np
from numpy import nan as NaN

填充缺失数据

fillna()是最主要的处理方式了。

df1=pd.DataFrame([[1,2,3],[NaN,NaN,2],[NaN,NaN,NaN],[8,8,NaN]])
df1

代码结果:

0 1 2
0 1.0 2.0 3.0
1 NaN NaN 2.0
2 NaN NaN NaN
3 8.0 8.0 NaN

用常数填充:

df1.fillna(100)

代码结果:

0 1 2
0 1.0 2.0 3.0
1 100.0 100.0 2.0
2 100.0 100.0 100.0
3 8.0 8.0 100.0

通过字典填充不同的常数:

df1.fillna({0:10,1:20,2:30})

代码结果:

0 1 2
0 1.0 2.0 3.0
1 10.0 20.0 2.0
2 10.0 20.0 30.0
3 8.0 8.0 30.0

传入inplace=True直接修改原对象:

df1.fillna(0,inplace=True)
df1

代码结果:

0 1 2
0 1.0 2.0 3.0
1 0.0 0.0 2.0
2 0.0 0.0 0.0
3 8.0 8.0 0.0

传入method=” “改变插值方式:

df2=pd.DataFrame(np.random.randint(0,10,(5,5)))
df2.iloc[1:4,3]=NaN;df2.iloc[2:4,4]=NaN
df2

代码结果:

0 1 2 3 4
0 6 6 2 4.0 1.0
1 4 7 0 NaN 5.0
2 6 5 5 NaN NaN
3 1 9 9 NaN NaN
4 4 8 1 5.0 9.0

df2.fillna(method='ffill')#用前面的值来填充

代码结果:

0 1 2 3 4
0 6 6 2 4.0 1.0
1 4 7 0 4.0 5.0
2 6 5 5 4.0 5.0
3 1 9 9 4.0 5.0
4 4 8 1 5.0 9.0

传入limit=” “限制填充个数:

df2.fillna(method='bfill',limit=2)

代码结果:

0 1 2 3 4
0 6 6 2 4.0 1.0
1 4 7 0 NaN 5.0
2 6 5 5 5.0 9.0
3 1 9 9 5.0 9.0
4 4 8 1 5.0 9.0

传入axis=” “修改填充方向:

df2.fillna(method="ffill",limit=1,axis=1)

代码结果:

0 1 2 3 4
0 6.0 6.0 2.0 4.0 1.0
1 4.0 7.0 0.0 0.0 5.0
2 6.0 5.0 5.0 5.0 NaN
3 1.0 9.0 9.0 9.0 NaN
4 4.0 8.0 1.0 5.0 9.0

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

浅谈Python3识别判断图片主要颜色并和颜色库进行对比的方法

浅谈Python3识别判断图片主要颜色并和颜色库进行对比的方法

【更新】主要提供两种方案: 方案一:(参考网上代码,感觉实用性不是很强)使用PIL截取图像,然后将RGB转为HSV进行判断,统计判断颜色,最后输出RGB值 方案二:使用opencv库函数...

Python 实现取多维数组第n维的前几位

Python 实现取多维数组第n维的前几位

现在我们有一个shape为(7352, 9, 128, 1)的numpy数组。 想要取出第2维的前三个数据,构成新数组(7352, 3, 128, 1) 我的思想是:将第2维数据转置(t...

PyQt5实现类似别踩白块游戏

本文实例为大家分享了PyQt5实现类似别踩白块游戏的具体代码,供大家参考,具体内容如下 #引入可能用到的库 from PyQt5.QtWidgets import (QWidget...

基于Django框架的权限组件rbac实例讲解

基于Django框架的权限组件rbac实例讲解

1.基于rbac的权限管理 RBAC(Role-Based Access Control,基于角色的访问控制),就是用户通过角色与权限进行关联。简单地说,一个用户拥有若干角色,一个角色拥...

python绘制散点图并标记序号的方法

python绘制散点图并标记序号的方法

实现二维平面上散点的绘制,并可以给每个散点标记序号或者名称: import numpy as np import matplotlib.pyplot as plt x=[2.3,4...