pytorch中的transforms模块实例详解

yipeiwu_com5年前Python基础

pytorch中的transforms模块中包含了很多种对图像数据进行变换的函数,这些都是在我们进行图像数据读入步骤中必不可少的,下面我们讲解几种最常用的函数,详细的内容还请参考pytorch官方文档(放在文末)。

data_transforms = transforms.Compose([
    transforms.RandomResizedCrop(224),
    transforms.RandomHorizontalFlip(),
    transforms.ToTensor(),
    transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
  ])

从上面的data_transforms变量中我们能够看出进行了多种变换,而Compose方法是将多种变换组合起来。data_transforms中一共包含了四个变换,前两个是对PILImage进行的,分别对其进行随机大小(默认原始图像大小的0.08-1.0)和随机宽高比(默认原始图像宽高比的3/4-4/3)的裁剪,之后resize到指定大小224;以及对原始图像进行随机(默认0.5概率)的水平翻转。

第三个transforms.ToTensor()的变换操作是关键一步,它将PILImage转变为torch.FloatTensor的数据形式,这种数据形式一定是C x H x W的图像格式加上[0,1]的大小范围。它将颜色通道这一维从第三维变换到了第一维。

最后的Normalize变换是对tensor这种数据格式进行的,它的操作是用给定的均值和标准差分别对每个通道的数据进行正则化。具体来说,给定均值(M1,...,Mn),给定标准差(S1,..,Sn),其中n是通道数(一般是3),对每个通道进行如下操作:

output[channel] = (input[channel] - mean[channel]) / std[channel]

最后需要强调一点的是,这几个变换的先后顺序有一定的讲究,因为不同的方法所处理的对象不一样,前两种变换是对PILImage进行的,而Normalize则是对tensor进行的,所以处理PILImage的变换方法(大多数方法)都需要放在ToTensor方法之前,而处理tensor的方法(比如Normalize方法)就要放在ToTensor方法之后。

附上pytorch官方参考:https://pytorch.org/docs/stable/torchvision/transforms.html?highlight=torchvision transforms

以上这篇pytorch中的transforms模块实例详解就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

使用PDB简单调试Python程序简明指南

使用PDB简单调试Python程序简明指南

在 Python 中也可以像 gcc/gdb 那样调试程序,只要在运行 Python 程序时引入 pdb 模块(假设要调试的程序名为 d.py): 复制代码 代码如下: $ vi d.p...

在pytorch中对非叶节点的变量计算梯度实例

在pytorch中对非叶节点的变量计算梯度实例

在pytorch中一般只对叶节点进行梯度计算,也就是下图中的d,e节点,而对非叶节点,也即是c,b节点则没有显式地去保留其中间计算过程中的梯度(因为一般来说只有叶节点才需要去更新),这样...

Django 框架模型操作入门教程

本文实例讲述了Django 框架模型操作。分享给大家供大家参考,具体如下: Django 对各种数据库提供了很好的支持,包括:PostgreSQL、MySQL、SQLite、Oracle...

《与孩子一起学编程》python自测题

测试题一、 1、 程序可以响应的两种事件分别是键盘事件和鼠标事件。 2、 处理事件的代码称为事件处理器 3、 Pygame使用KEYDOWN事件来检测按键是否按下。 4、 Pos...

Python使用sftp实现上传和下载功能(实例代码)

在Python中可以使用paramiko模块中的sftp登陆远程主机,实现上传和下载功能。 1.功能实现 根据输入参数判断是文件还是目录,进行上传和下载 本地参数local需要与远程参数...