pytorch中的transforms模块实例详解

yipeiwu_com6年前Python基础

pytorch中的transforms模块中包含了很多种对图像数据进行变换的函数,这些都是在我们进行图像数据读入步骤中必不可少的,下面我们讲解几种最常用的函数,详细的内容还请参考pytorch官方文档(放在文末)。

data_transforms = transforms.Compose([
    transforms.RandomResizedCrop(224),
    transforms.RandomHorizontalFlip(),
    transforms.ToTensor(),
    transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
  ])

从上面的data_transforms变量中我们能够看出进行了多种变换,而Compose方法是将多种变换组合起来。data_transforms中一共包含了四个变换,前两个是对PILImage进行的,分别对其进行随机大小(默认原始图像大小的0.08-1.0)和随机宽高比(默认原始图像宽高比的3/4-4/3)的裁剪,之后resize到指定大小224;以及对原始图像进行随机(默认0.5概率)的水平翻转。

第三个transforms.ToTensor()的变换操作是关键一步,它将PILImage转变为torch.FloatTensor的数据形式,这种数据形式一定是C x H x W的图像格式加上[0,1]的大小范围。它将颜色通道这一维从第三维变换到了第一维。

最后的Normalize变换是对tensor这种数据格式进行的,它的操作是用给定的均值和标准差分别对每个通道的数据进行正则化。具体来说,给定均值(M1,...,Mn),给定标准差(S1,..,Sn),其中n是通道数(一般是3),对每个通道进行如下操作:

output[channel] = (input[channel] - mean[channel]) / std[channel]

最后需要强调一点的是,这几个变换的先后顺序有一定的讲究,因为不同的方法所处理的对象不一样,前两种变换是对PILImage进行的,而Normalize则是对tensor进行的,所以处理PILImage的变换方法(大多数方法)都需要放在ToTensor方法之前,而处理tensor的方法(比如Normalize方法)就要放在ToTensor方法之后。

附上pytorch官方参考:https://pytorch.org/docs/stable/torchvision/transforms.html?highlight=torchvision transforms

以上这篇pytorch中的transforms模块实例详解就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

在Django的form中使用CSS进行设计的方法

修改form的显示的最快捷的方式是使用CSS。 尤其是错误列表,可以增强视觉效果。自动生成的错误列表精确的使用`` <ul class=”errorlist”>``,这样,我...

wxpython实现按钮切换界面的方法

wxpython实现按钮切换界面的方法

本文实例为大家分享了wxpython按钮切换界面的具体实现代码,供大家参考,具体内容如下 #-*- coding:utf-8 -*- import wx class TestF...

python selenium 查找隐藏元素 自动播放视频功能

python selenium 查找隐藏元素 自动播放视频功能

在使用python做爬虫的过程中,有些页面的的部分数据是通过js异步加载的,js调用接口的请求中有时还带有些加密的参数很难破解无法使用requests这样的包直接爬取数据,因此需要借助s...

浅谈tensorflow1.0 池化层(pooling)和全连接层(dense)

池化层定义在tensorflow/python/layers/pooling.py. 有最大值池化和均值池化。 1、tf.layers.max_pooling2d max_pooli...

Python清空文件并替换内容的实例

有个文本文件,需要替换里面的一个词,用python来完成,我是这样写的: def modify_text(): with open('test.txt', "r+") as f:...