pytorch中的transforms模块实例详解

yipeiwu_com6年前Python基础

pytorch中的transforms模块中包含了很多种对图像数据进行变换的函数,这些都是在我们进行图像数据读入步骤中必不可少的,下面我们讲解几种最常用的函数,详细的内容还请参考pytorch官方文档(放在文末)。

data_transforms = transforms.Compose([
    transforms.RandomResizedCrop(224),
    transforms.RandomHorizontalFlip(),
    transforms.ToTensor(),
    transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
  ])

从上面的data_transforms变量中我们能够看出进行了多种变换,而Compose方法是将多种变换组合起来。data_transforms中一共包含了四个变换,前两个是对PILImage进行的,分别对其进行随机大小(默认原始图像大小的0.08-1.0)和随机宽高比(默认原始图像宽高比的3/4-4/3)的裁剪,之后resize到指定大小224;以及对原始图像进行随机(默认0.5概率)的水平翻转。

第三个transforms.ToTensor()的变换操作是关键一步,它将PILImage转变为torch.FloatTensor的数据形式,这种数据形式一定是C x H x W的图像格式加上[0,1]的大小范围。它将颜色通道这一维从第三维变换到了第一维。

最后的Normalize变换是对tensor这种数据格式进行的,它的操作是用给定的均值和标准差分别对每个通道的数据进行正则化。具体来说,给定均值(M1,...,Mn),给定标准差(S1,..,Sn),其中n是通道数(一般是3),对每个通道进行如下操作:

output[channel] = (input[channel] - mean[channel]) / std[channel]

最后需要强调一点的是,这几个变换的先后顺序有一定的讲究,因为不同的方法所处理的对象不一样,前两种变换是对PILImage进行的,而Normalize则是对tensor进行的,所以处理PILImage的变换方法(大多数方法)都需要放在ToTensor方法之前,而处理tensor的方法(比如Normalize方法)就要放在ToTensor方法之后。

附上pytorch官方参考:https://pytorch.org/docs/stable/torchvision/transforms.html?highlight=torchvision transforms

以上这篇pytorch中的transforms模块实例详解就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

解决Pycharm出现的部分快捷键无效问题

解决Pycharm出现的部分快捷键无效问题

重装电脑,在windows和虚拟机里面的Ubuntu里都安装了Pycharm专业版,安装的时候我都选择了vim插件,装好之后打开发现ctrl+X不能用,并且选中部分内容在按backspa...

python basemap 画出经纬度并标定的实例

如下所示: 两个函数:Basemap.drawparallels ##纬度 Basemap.drawmeridians ##经度 from mpl_toolkits.bas...

python基于http下载视频或音频

一、简介 这里介绍使用python基于http下载视频或音频。 二、关键点 1、断点续传 视频或音频文件一般比较大,所以通过需要断点续传。方式通过在http的header里添加Range...

PyQt5下拉式复选框QComboCheckBox的实例

PyQt5下拉式复选框QComboCheckBox的实例

笔者在用PyQt5写GUI时碰到了需要使用下拉式复选框的情况,但是PyQt5中没有相应的组件,而网上找到的方法大多是qt使用的,所以不能直接拿来用。 没办法,在这种让人无奈的情况下,笔者...

Tensorflow 实现分批量读取数据

之前的博客里使用tf读取数据都是每次fetch一条记录,实际上大部分时候需要fetch到一个batch的小批量数据,在tf中这一操作的明显变化就是tensor的rank发生了变化,我目前...