PyTorch实现更新部分网络,其他不更新

yipeiwu_com6年前Python基础

torch.Tensor.detach()的使用

detach()的官方说明如下:

Returns a new Tensor, detached from the current graph.
The result will never require gradient.

假设有模型A和模型B,我们需要将A的输出作为B的输入,但训练时我们只训练模型B. 那么可以这样做:

input_B = output_A.detach()

它可以使两个计算图的梯度传递断开,从而实现我们所需的功能。

以上这篇PyTorch实现更新部分网络,其他不更新就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

pytorch中tensor.expand()和tensor.expand_as()函数详解

tensor.expend()函数 >>> import torch >>> a=torch.tensor([[2],[3],[4]]) >...

Django 创建新App及其常用命令的实现方法

创建新的项目 django-admin.py startproject my_project 创建新的App # 在Django项目(my_project)的根目录下执行 py...

python list语法学习(带例子)

创建:list = [5,7,9]取值和改值:list[1] = list[1] * 5列表尾插入:list.append(4)去掉第0个值并返回第0个值的数值:list.pop(0)去...

Python连接DB2数据库

Python连接DB2数据库

在工作中遇到了这样的情况,项目中需要连接IBM的关系型数据库(DB2),关于这方面的库比较稀少,其中 ibm_db 是比较好用的一个库,网上也有教程,但是好像不准确,也不太详细,错误百出...

简单了解python filter、map、reduce的区别

这篇文章主要介绍了简单了解python filter、map、reduce的区别,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下 pyt...