pytorch 实现cross entropy损失函数计算方式

yipeiwu_com5年前Python基础

均方损失函数:

这里 loss, x, y 的维度是一样的,可以是向量或者矩阵,i 是下标。

很多的 loss 函数都有 size_average 和 reduce 两个布尔类型的参数。因为一般损失函数都是直接计算 batch 的数据,因此返回的 loss 结果都是维度为 (batch_size, ) 的向量。

(1)如果 reduce = False,那么 size_average 参数失效,直接返回向量形式的 loss

(2)如果 reduce = True,那么 loss 返回的是标量

a)如果 size_average = True,返回 loss.mean();
b)如果 size_average = False,返回 loss.sum();

注意:默认情况下, reduce = True,size_average = True

import torch
import numpy as np

1、返回向量

loss_fn = torch.nn.MSELoss(reduce=False, size_average=False)


a=np.array([[1,2],[3,4]])
b=np.array([[2,3],[4,5]])
input = torch.autograd.Variable(torch.from_numpy(a))
target = torch.autograd.Variable(torch.from_numpy(b))

这里将Variable类型统一为float()(tensor类型也是调用xxx.float())

loss = loss_fn(input.float(), target.float())
print(loss)
tensor([[ 1., 1.],
  [ 1., 1.]])

2、返回平均值

a=np.array([[1,2],[3,4]])
b=np.array([[2,3],[4,4]])
loss_fn = torch.nn.MSELoss(reduce=True, size_average=True)
input = torch.autograd.Variable(torch.from_numpy(a))
target = torch.autograd.Variable(torch.from_numpy(b))
loss = loss_fn(input.float(), target.float())
 print(loss)
tensor(0.7500)

以上这篇pytorch 实现cross entropy损失函数计算方式就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

python实现批量图片格式转换

本文实例为大家分享了python实现批量格式转换的具体代码,供大家参考,具体内容如下 深度学习过程中总是绕不开数据集的制作,有时候实际图片格式或大小可能与需要关心的图片信息不一致,那么...

详解python深浅拷贝区别

详解python深浅拷贝区别

在Python中对象的赋值其实就是对象的引用。当创建一个对象,把它赋值给另一个变量的时候,python并没有拷贝这个对象,只是拷贝了这个对象的引用而已。 浅拷贝:拷贝了最外围的对象本身,...

python自定义类并使用的方法

本文实例讲述了python自定义类并使用的方法。分享给大家供大家参考。具体如下: class Person: def __init__(self, first, middle,...

解决出现Incorrect integer value: '' for column 'id' at row 1的问题

解决出现Incorrect integer value: '' for column 'id' at row 1的问题 前言: 今天在学习Python的过程中操作数据库,遇到了一个问题,...

Pytorch: 自定义网络层实例

自定义Autograd函数 对于浅层的网络,我们可以手动的书写前向传播和反向传播过程。但是当网络变得很大时,特别是在做深度学习时,网络结构变得复杂。前向传播和反向传播也随之变得复杂,手动...