pytorch 实现cross entropy损失函数计算方式

yipeiwu_com5年前Python基础

均方损失函数:

这里 loss, x, y 的维度是一样的,可以是向量或者矩阵,i 是下标。

很多的 loss 函数都有 size_average 和 reduce 两个布尔类型的参数。因为一般损失函数都是直接计算 batch 的数据,因此返回的 loss 结果都是维度为 (batch_size, ) 的向量。

(1)如果 reduce = False,那么 size_average 参数失效,直接返回向量形式的 loss

(2)如果 reduce = True,那么 loss 返回的是标量

a)如果 size_average = True,返回 loss.mean();
b)如果 size_average = False,返回 loss.sum();

注意:默认情况下, reduce = True,size_average = True

import torch
import numpy as np

1、返回向量

loss_fn = torch.nn.MSELoss(reduce=False, size_average=False)


a=np.array([[1,2],[3,4]])
b=np.array([[2,3],[4,5]])
input = torch.autograd.Variable(torch.from_numpy(a))
target = torch.autograd.Variable(torch.from_numpy(b))

这里将Variable类型统一为float()(tensor类型也是调用xxx.float())

loss = loss_fn(input.float(), target.float())
print(loss)
tensor([[ 1., 1.],
  [ 1., 1.]])

2、返回平均值

a=np.array([[1,2],[3,4]])
b=np.array([[2,3],[4,4]])
loss_fn = torch.nn.MSELoss(reduce=True, size_average=True)
input = torch.autograd.Variable(torch.from_numpy(a))
target = torch.autograd.Variable(torch.from_numpy(b))
loss = loss_fn(input.float(), target.float())
 print(loss)
tensor(0.7500)

以上这篇pytorch 实现cross entropy损失函数计算方式就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

python实现读取excel写入mysql的小工具详解

Python是数据分析的强大利器 利用Python做数据分析,第一步就是学习如何读取日常工作中产生各种excel报表并存入数据中,方便后续数据处理。 这里向大家分享python如何读取...

linux 下python多线程递归复制文件夹及文件夹中的文件

本文是利用python 复制文件夹 刚开始写了一个普通的递归复制文件夹    然后想了想 觉得对io频繁的程序 threading 线程还比较友好  就写了...

在Python的struct模块中进行数据格式转换的方法

在Python的struct模块中进行数据格式转换的方法

Python是一门非常简洁的语言,对于数据类型的表示,不像其他语言预定义了许多类型(如:在C#中,光整型就定义了8种),它只定义了六种基本类型:字符串,整数,浮点数,元组,列表,字典。通...

浅谈利用numpy对矩阵进行归一化处理的方法

本文不讲归一化原理,只介绍实现(事实上看了代码就会懂原理),代码如下: def Normalize(data): m = np.mean(data) mx = max(data)...

钉钉群自定义机器人消息Python封装的实例

钉钉群自定义机器人消息Python封装的实例

一、钉钉群自定义机器人介绍 钉钉群机器人是钉钉群的一个高级扩展功能,然而使用起来却非常简单,只有注册一个钉钉账号即可,就可以将第三方服务的信息聚合到钉钉群中,实现信息的自动化同步,例如:...