pytorch 实现cross entropy损失函数计算方式

yipeiwu_com6年前Python基础

均方损失函数:

这里 loss, x, y 的维度是一样的,可以是向量或者矩阵,i 是下标。

很多的 loss 函数都有 size_average 和 reduce 两个布尔类型的参数。因为一般损失函数都是直接计算 batch 的数据,因此返回的 loss 结果都是维度为 (batch_size, ) 的向量。

(1)如果 reduce = False,那么 size_average 参数失效,直接返回向量形式的 loss

(2)如果 reduce = True,那么 loss 返回的是标量

a)如果 size_average = True,返回 loss.mean();
b)如果 size_average = False,返回 loss.sum();

注意:默认情况下, reduce = True,size_average = True

import torch
import numpy as np

1、返回向量

loss_fn = torch.nn.MSELoss(reduce=False, size_average=False)


a=np.array([[1,2],[3,4]])
b=np.array([[2,3],[4,5]])
input = torch.autograd.Variable(torch.from_numpy(a))
target = torch.autograd.Variable(torch.from_numpy(b))

这里将Variable类型统一为float()(tensor类型也是调用xxx.float())

loss = loss_fn(input.float(), target.float())
print(loss)
tensor([[ 1., 1.],
  [ 1., 1.]])

2、返回平均值

a=np.array([[1,2],[3,4]])
b=np.array([[2,3],[4,4]])
loss_fn = torch.nn.MSELoss(reduce=True, size_average=True)
input = torch.autograd.Variable(torch.from_numpy(a))
target = torch.autograd.Variable(torch.from_numpy(b))
loss = loss_fn(input.float(), target.float())
 print(loss)
tensor(0.7500)

以上这篇pytorch 实现cross entropy损失函数计算方式就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

python删除文件夹下相同文件和无法打开的图片

前天不小心把硬盘格式化了,丢了好多照片,后来用Recuva这款软件成功把文件恢复过来,可是恢复的文件中有好多重复的文件和无法打开的图片,所以写了两个python的小程序用来解决这个问题...

python利用微信公众号实现报警功能

微信公众号共有三种,服务号、订阅号、企业号。它们在获取AccessToken上各有不同。 其中订阅号比较坑,它的AccessToken是需定时刷新,重复获取将导致上次获取的AccessT...

Python实现随机漫步功能

Python实现随机漫步功能

随机漫步生成是无规则的,是系统自行选择的结果。根据设定的规则自定生成,上下左右的方位,每次所经过的方向路径。 首先,创建一个RandomWalk()类和fill_walk()函数 ran...

python实现隐马尔科夫模型HMM

一份完全按照李航<<统计学习方法>>介绍的HMM代码,供大家参考,具体内容如下 #coding=utf8 ''''' Created on 2017-8-...

pandas 数据结构之Series的使用方法

1. Series Series 是一个类数组的数据结构,同时带有标签(lable)或者说索引(index)。 1.1 下边生成一个最简单的Series对象,因为没有给Series指定索...