PyTorch中topk函数的用法详解

yipeiwu_com5年前Python基础

听名字就知道这个函数是用来求tensor中某个dim的前k大或者前k小的值以及对应的index。

用法

torch.topk(input, k, dim=None, largest=True, sorted=True, out=None) -> (Tensor, LongTensor)

input:一个tensor数据

k:指明是得到前k个数据以及其index

dim: 指定在哪个维度上排序, 默认是最后一个维度

largest:如果为True,按照大到小排序; 如果为False,按照小到大排序

sorted:返回的结果按照顺序返回

out:可缺省,不要

topk最常用的场合就是求一个样本被网络认为前k个最可能属于的类别。我们就用这个场景为例,说明函数的使用方法。

假设一个,N是样本数目,一般等于batch size, D是类别数目。我们想知道每个样本的最可能属于的那个类别,其实可以用torch.max得到。如果要使用topk,则k应该设置为1。

import torch

pred = torch.randn((4, 5))
print(pred)
values, indices = pred.topk(1, dim=1, largest=True, sorted=True)
print(indices)
# 用max得到的结果,设置keepdim为True,避免降维。因为topk函数返回的index不降维,shape和输入一致。
_, indices_max = pred.max(dim=1, keepdim=True)

print(indices_max == indices)
# pred
tensor([[-0.1480, -0.9819, -0.3364, 0.7912, -0.3263],
    [-0.8013, -0.9083, 0.7973, 0.1458, -0.9156],
    [-0.2334, -0.0142, -0.5493, 0.0673, 0.8185],
    [-0.4075, -0.1097, 0.8193, -0.2352, -0.9273]])
# indices, shape为 【4,1】,
tensor([[3],  #【0,0】代表 第一个样本最可能属于第一类别
    [2],  # 【1, 0】代表第二个样本最可能属于第二类别
    [4],
    [2]])
# indices_max等于indices
tensor([[True],
    [True],
    [True],
    [True]])

现在在尝试一下k=2

import torch

pred = torch.randn((4, 5))
print(pred)
values, indices = pred.topk(2, dim=1, largest=True, sorted=True) # k=2
print(indices)
# pred
tensor([[-0.2203, -0.7538, 1.8789, 0.4451, -0.2526],
    [-0.0413, 0.6366, 1.1155, 0.3484, 0.0395],
    [ 0.0365, 0.5158, 1.1067, -0.9276, -0.2124],
    [ 0.6232, 0.9912, -0.8562, 0.0148, 1.6413]])
# indices
tensor([[2, 3],
    [2, 1],
    [2, 1],
    [4, 1]])

可以发现indices的shape变成了【4, k】,k=2。

其中indices[0] = [2,3]。其意义是说明第一个样本的前两个最大概率对应的类别分别是第3类和第4类。

大家可以自行print一下values。可以发现values的shape和indices的shape是一样的。indices描述了在values中对应的值在pred中的位置。

以上这篇PyTorch中topk函数的用法详解就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

python之生产者消费者模型实现详解

代码及注释如下 #Auther Bob #--*--conding:utf-8 --*-- #生产者消费者模型,这里的例子是这样的,有一个厨师在做包子,有一个顾客在吃包子,有一个服务...

Python的包管理器pip更换软件源的方法详解

pip镜像源 在国内如果不使用 VPN 是没办法好好使用 pip 命令安装任何 Python 包的。所以另一个选择就是使用国内各大厂的开源镜像源。 目前国内靠谱的 pip 镜像源有:...

pycharm 使用心得(七)一些实用功能介绍

pycharm 使用心得(七)一些实用功能介绍

实时比较 PyCharm 对一个文件里你做的改动保持实时的跟踪,通过在编辑器的左侧栏显示一个蓝色的标记。这一点非常方便,我之前一直是在Eclipse里面用命令“Compare again...

python中实现定制类的特殊方法总结

看到类似__slots__这种形如__xxx__的变量或者函数名就要注意,这些在Python中是有特殊用途的。 __slots__我们已经知道怎么用了,__len__()方法我们也知道是...

Python 使用matplotlib模块模拟掷骰子

Python 使用matplotlib模块模拟掷骰子

掷骰子 骰子类 # die.py 骰子类模块 from random import randint class Die(): """骰子类""" def __init__(s...