pytorch 改变tensor尺寸的实现

yipeiwu_com5年前Python基础

改变Tensor尺寸的操作

1.tensor.view

tensor.view方法,可以调整tensor的形状,但必须保证调整前后元素总数一致。view不会改变自身数据,返回的新的tensor与源tensor共享内存,即更改其中一个,另外一个也会跟着改变。

例:

In: import torch as t
   a = t.arange(0, 6)
   a.view(2, 3)
Out:tensor([[0, 1, 2],
    [3, 4, 5]])

In: b = a.view(-1, 3)#当某一维为-1的时候,会自动计算它的大小
Out:tensor([[0, 1, 2],
    [3, 4, 5]])

2.tensor.unsqueeze 和 tensor.squeeze

tensor.unsqueeze 和 tensor.squeeze分别用于增加或减少tensor的某一维度。

例:

In: b.unsqueeze(1)#注意形状, 在第1维(下标从0开始)上增加“1”
Out:tensor([[[0, 1, 2]],
    [[3, 4, 5]]])
    
In: b.unsqueeze(-2) #-2表示倒数第二个维度
Out:tensor([[[0, 1, 2]],
    [[3, 4, 5]]])
    
In: c = b.view(1, 1, 1, 2, 3)
   c.unsqueeze(0)#压缩第0维的“1”
Out:tensor([[[[[[0, 1, 2],
      [3, 4, 5]]]]]])
      
In: c.squeeze() #把所有维度为“1”的压缩
Out:tensor([[0, 1, 2],
    [3, 4, 5]])
    
In:a[1] = 100
  b #a和b共享内存,修改了a,b也变了
Out:tensor([[ 0, 100,  2],
    [ 3,  4,  5]])

3.tensor.resize

tensor.resize是另外一种可以调整tensor尺寸的方法,但与view不同,它可以修改tensor的尺寸。如果新尺寸超过了原尺寸,会自动分配新的内存空间;如果新尺寸小于原尺寸,则之前的数据依旧会保存

例:

In: b.resize_(1, 3)
Out:tensor([[ 0, 100,  2]])

In: b.resize_(3, 3)#旧的数据依旧保存着,多出的数据会分配新空间
Out:tensor([[         0,         100,          2],
    [         3,          4,          5],
    [         0,          0, 2323344073926471279]])

以上这篇pytorch 改变tensor尺寸的实现就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

python 环境搭建 及python-3.4.4的下载和安装过程

python 环境搭建 及python-3.4.4的下载和安装过程

第一步:下载和安装python-3.4.4amd.msi 可以去官方网站下载,也可以从网盘下载: 链接: https://pan.baidu.com/s/1hLn2y51lHiTGXCj...

python正则表达式中的括号匹配问题

问题: m = re.findall('[0-9]*4[0-9]*', '[4]') 可以匹配到4. m = re.findall('([0-9])*4([0-9])*', '[4]'...

Python计算字符宽度的方法

本文实例讲述了Python计算字符宽度的方法。分享给大家供大家参考,具体如下: 最近在用python写一个CLI小程序,其中涉及到计算字符宽度,目标是以友好的方式将一个长字符串截取为等宽...

python3+PyQt5自定义视图详解

python3+PyQt5自定义视图详解

pyqt提供的几个视图类都可以较好工作,包括QLisView,QTableView和QTreeView。但是对于一些难以用现有的方式来呈现数据,这时,可以创建我们自己的视图子类并将其用做...

python 移动图片到另外一个文件夹的实例

如下所示: # -*- coding:utf8 -*- import os import shutil import numpy as np import pandas as p...