对tensorflow中的strides参数使用详解

yipeiwu_com5年前Python基础

在二维卷积函数tf.nn.conv2d(),最大池化函数tf.nn.max_pool(),平均池化函数

tf.nn.avg_pool()中,卷积核的移动步长都需要制定一个参数strides(步长),因为无论是卷积操作还是各种类型的池化操作,都是某种形式的滑动窗口(sliding window)处理,这就要求指定从当前窗口移动下一个窗口位置的移动步长。

TensorFlow 文档关于 strides的说明如下:

strides: A list of ints that has length >= 4. The stride of the sliding window for each dimension of the input tensor.

首先要求 strides 为长度不小于 4 的整数构成的 list,strides参数表示的是滑窗在输入张量各个维度上的移动步长。

如果strides=[b,h,w,c],其中strides[0]和strides[3]默认为1。

具体什么含义呢?

一般而言,对于输入张量(input tensor)有四维信息:[batch, height, width, channels](分别表示 batch_size, 也即样本的数目,单个样本的行数和列数,样本的频道数,rgb图像就是三维的,灰度图像则是一维),对于一个二维卷积操作而言,其主要作用在 height, width上。

strides参数确定了滑动窗口在各个维度上移动的步数。一种常用的经典设置就是要求,strides[0]=strides[3]=1。

strides[0]=1,表示在 batch 维度上移动为 1,指不跳过任何一个样本,每一个样本都会进行运算

strides[1] = 1,表示在高度上移动步长为1,这个可以自己设定,根据网络的结构合理调节

strides[2] = 1,表示在宽度上的移动步长为1,这个可以自己设定,根据网络的结构合理调节

strides[3] = 1,表示在 channels 维度上移动为 1,指不跳过任何一个颜色通道,每一个通道都会进行运算

以上这篇对tensorflow中的strides参数使用详解就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

Python命令行参数解析工具 docopt 安装和应用过程详解

什么是 docopt? 1、docopt 是一种 Python 编写的命令行执行脚本的交互语言。 它是一种语言! 它是一种语言! 它是一种语言! 2、使用这种语言可以在自己的脚本中,添...

Python性能优化的20条建议

优化算法时间复杂度 算法的时间复杂度对程序的执行效率影响最大,在Python中可以通过选择合适的数据结构来优化时间复杂度,如list和set查找某一个元素的时间复杂度分别是O(n)和O(...

Android基于TCP和URL协议的网络编程示例【附demo源码下载】

Android基于TCP和URL协议的网络编程示例【附demo源码下载】

本文实例讲述了Android基于TCP和URL协议的网络编程。分享给大家供大家参考,具体如下: 手机本身是作为手机终端使用的,因此它的计算能力,存储能力都是有限的。它的主要优势是携带方便...

django 信号调度机制详解

django 信号调度机制详解

前言 Django中提供了“信号调度”,用于在框架执行操作时解耦。通俗来讲,就是一些动作发生的时候,信号允许特定的发送者去提醒一些接受者。 1、Django内置信号 Model si...

对DataFrame数据中的重复行,利用groupby累加合并的方法详解

对DataFrame数据中的重复行,利用groupby累加合并的方法详解

pandas读取一组数据,可能存在重复索引,虽然可以利用drop_duplicate直接删除,但是会删除重要信息。 比如同一ID用户,多次登录学习时间。要计算该用户总共‘'学习时间‘',...