pytorch 实现在预训练模型的 input上增减通道

yipeiwu_com6年前Python基础

如何把imagenet预训练的模型,输入层的通道数随心所欲的修改,从而来适应自己的任务

#增加一个通道
w = layers[0].weight
layers[0] = nn.Conv2d(4, 64, kernel_size=(7, 7), stride=(2, 2), padding=(3, 3), bias=False)
layers[0].weight = torch.nn.Parameter(torch.cat((w, w[:, :1, :, :]), dim=1))
 
#方式2
w = layers[0].weight
layers[0] = nn.Conv2d(4, 64, kernel_size=(7, 7), stride=(2, 2), padding=(3, 3), bias=False)
layers[0].weight = torch.nn.Parameter(torch.cat((w, torch.zeros(64, 1, 7, 7)), dim=1))
 
 
#单通道输入
layers[0] = nn.Conv2d(1, 64, kernel_size=(7, 7), stride=(2, 2), padding=(3, 3), bias=False)
layers[0].weight = torch.nn.Parameter(w[:, :1, :, :])

以上这篇pytorch 实现在预训练模型的 input上增减通道就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

在python中以相同顺序shuffle两个list的方法

通常做机器学习问题时,需要准备训练数据,通常会把样本数据和标签存放于2个list中,比如train_x = [x1,x2,...,xN][x1,x2,...,xN],train_y =...

wxpython布局的实现方法

wxpython布局的实现方法

我们目前已经学会了四个控件,也编出了几个窗口实例,它们都有一个共同的特点,就是丑,主要原因是没有进行合理地布局。 此前的布局方式简单粗暴,即明确规定每个控件的大小和位置,从而使之固定。这...

浅谈Python实现Apriori算法介绍

浅谈Python实现Apriori算法介绍

导读: 随着大数据概念的火热,啤酒与尿布的故事广为人知。我们如何发现买啤酒的人往往也会买尿布这一规律?数据挖掘中的用于挖掘频繁项集和关联规则的Apriori算法可以告诉我们。本文首先对A...

Python程序运行原理图文解析

Python程序运行原理图文解析

本文研究的主要是Python程序运行原理,具体介绍如下。 编译型语言(C语言为例) 动态型语言 一个程序是如何运行起来的?比如下面的代码 #othermodule.py def...

Python一行代码实现快速排序的方法

Python一行代码实现快速排序的方法

今天将单独为大家介绍一下快速排序! 一、算法介绍 排序算法(Sorting algorithm)是计算机科学最古老、最基本的课题之一。要想成为合格的程序员,就必须理解和掌握各种排序算法。...