pytorch 实现在预训练模型的 input上增减通道

yipeiwu_com5年前Python基础

如何把imagenet预训练的模型,输入层的通道数随心所欲的修改,从而来适应自己的任务

#增加一个通道
w = layers[0].weight
layers[0] = nn.Conv2d(4, 64, kernel_size=(7, 7), stride=(2, 2), padding=(3, 3), bias=False)
layers[0].weight = torch.nn.Parameter(torch.cat((w, w[:, :1, :, :]), dim=1))
 
#方式2
w = layers[0].weight
layers[0] = nn.Conv2d(4, 64, kernel_size=(7, 7), stride=(2, 2), padding=(3, 3), bias=False)
layers[0].weight = torch.nn.Parameter(torch.cat((w, torch.zeros(64, 1, 7, 7)), dim=1))
 
 
#单通道输入
layers[0] = nn.Conv2d(1, 64, kernel_size=(7, 7), stride=(2, 2), padding=(3, 3), bias=False)
layers[0].weight = torch.nn.Parameter(w[:, :1, :, :])

以上这篇pytorch 实现在预训练模型的 input上增减通道就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

python for循环remove同一个list过程解析

下午在用python将Linux的conf配置文件转化成字典dict时遇到了一个奇怪的问题,原先conf配置文件中没有注释行(以#开头的行),后来为了避免这种情况,添加了一个对以#开头的...

Python使用Redis实现作业调度系统(超简单)

概述 Redis是一个开源,先进的key-value存储,并用于构建高性能,可扩展的Web应用程序的完美解决方案。 Redis从它的许多竞争继承来的三个主要特点: Redis数据库完全在...

python Pandas如何对数据集随机抽样

python Pandas如何对数据集随机抽样

摘要:有时候我们只需要数据集中的一部分,并不需要全部的数据。这个时候我们就要对数据集进行随机的抽样。pandas中自带有抽样的方法。 应用场景: 我有10W行数据,每一行都11列的属性...

Python 中如何实现参数化测试的方法示例

之前,我曾转过一个单元测试框架系列的文章,里面介绍了 unittest、nose/nose2 与 pytest 这三个最受人欢迎的 Python 测试框架。 本文想针对测试中一种很常见的...

python图片二值化提高识别率代码实例

python图片二值化提高识别率代码实例

这篇文章主要介绍了python图片二值化提高识别率代码实例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下 代码如下 import...