pytorch动态网络以及权重共享实例

yipeiwu_com6年前Python基础

pytorch 动态网络+权值共享

pytorch以动态图著称,下面以一个栗子来实现动态网络和权值共享技术:

# -*- coding: utf-8 -*-
import random
import torch


class DynamicNet(torch.nn.Module):
  def __init__(self, D_in, H, D_out):
    """
    这里构造了几个向前传播过程中用到的线性函数
    """
    super(DynamicNet, self).__init__()
    self.input_linear = torch.nn.Linear(D_in, H)
    self.middle_linear = torch.nn.Linear(H, H)
    self.output_linear = torch.nn.Linear(H, D_out)

  def forward(self, x):
    """
    For the forward pass of the model, we randomly choose either 0, 1, 2, or 3
    and reuse the middle_linear Module that many times to compute hidden layer
    representations.

    Since each forward pass builds a dynamic computation graph, we can use normal
    Python control-flow operators like loops or conditional statements when
    defining the forward pass of the model.

    Here we also see that it is perfectly safe to reuse the same Module many
    times when defining a computational graph. This is a big improvement from Lua
    Torch, where each Module could be used only once.
    这里中间层每次向前过程中都是随机添加0-3层,而且中间层都是使用的同一个线性层,这样计算时,权值也是用的同一个。
    """
    h_relu = self.input_linear(x).clamp(min=0)
    for _ in range(random.randint(0, 3)):
      h_relu = self.middle_linear(h_relu).clamp(min=0)
    y_pred = self.output_linear(h_relu)
    return y_pred


    # N is batch size; D_in is input dimension;
    # H is hidden dimension; D_out is output dimension.
    N, D_in, H, D_out = 64, 1000, 100, 10

    # Create random Tensors to hold inputs and outputs
    x = torch.randn(N, D_in)
    y = torch.randn(N, D_out)

    # Construct our model by instantiating the class defined above
    model = DynamicNet(D_in, H, D_out)

    # Construct our loss function and an Optimizer. Training this strange model with
    # vanilla stochastic gradient descent is tough, so we use momentum
    criterion = torch.nn.MSELoss(reduction='sum')
    optimizer = torch.optim.SGD(model.parameters(), lr=1e-4, momentum=0.9)
    for t in range(500):
      # Forward pass: Compute predicted y by passing x to the model
      y_pred = model(x)

      # Compute and print loss
      loss = criterion(y_pred, y)
      print(t, loss.item())

      # Zero gradients, perform a backward pass, and update the weights.
      optimizer.zero_grad()
      loss.backward()
      optimizer.step()

这个程序实际上是一种RNN结构,在执行过程中动态的构建计算图

References: Pytorch Documentations.

以上这篇pytorch动态网络以及权重共享实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

Python实现利用163邮箱远程关电脑脚本

学了一个礼拜Python之后写的,代码很粗糙,只是为了完成利用163邮箱远程关电脑功能。直接把代码发上来吧。要执行的话得先安装一些模块,看import语句。 十月初写的,写完这个之后就没...

OpenCV3.0+Python3.6实现特定颜色的物体追踪

OpenCV3.0+Python3.6实现特定颜色的物体追踪

一、环境 win10、Python3.6、OpenCV3.x;编译器:pycharm5.0.3 二、实现目标 根据需要追踪的物体颜色,设定阈值,在视频中框选出需要追踪的物体。 三、实现步...

通过实例解析python描述符原理作用

这篇文章主要介绍了通过实例解析python描述符原理作用,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下 本质上看,描述符是一个类,只不...

CentOS6.5设置Django开发环境

今天在我的Centos6.5机器上安装 Django 开发环境,在安装完使用 “django-admin.py startproject myapp” 创建应用的时候报了下面的错误...

一篇文章弄懂Python中的可迭代对象、迭代器和生成器

一篇文章弄懂Python中的可迭代对象、迭代器和生成器

我们都知道,序列可以迭代。但是,你知道为什么吗? 本文来探讨一下迭代背后的原理。 序列可以迭代的原因:iter 函数。解释器需要迭代对象 x 时,会自动调用 iter(x)。内置的 it...