pytorch动态网络以及权重共享实例

yipeiwu_com6年前Python基础

pytorch 动态网络+权值共享

pytorch以动态图著称,下面以一个栗子来实现动态网络和权值共享技术:

# -*- coding: utf-8 -*-
import random
import torch


class DynamicNet(torch.nn.Module):
  def __init__(self, D_in, H, D_out):
    """
    这里构造了几个向前传播过程中用到的线性函数
    """
    super(DynamicNet, self).__init__()
    self.input_linear = torch.nn.Linear(D_in, H)
    self.middle_linear = torch.nn.Linear(H, H)
    self.output_linear = torch.nn.Linear(H, D_out)

  def forward(self, x):
    """
    For the forward pass of the model, we randomly choose either 0, 1, 2, or 3
    and reuse the middle_linear Module that many times to compute hidden layer
    representations.

    Since each forward pass builds a dynamic computation graph, we can use normal
    Python control-flow operators like loops or conditional statements when
    defining the forward pass of the model.

    Here we also see that it is perfectly safe to reuse the same Module many
    times when defining a computational graph. This is a big improvement from Lua
    Torch, where each Module could be used only once.
    这里中间层每次向前过程中都是随机添加0-3层,而且中间层都是使用的同一个线性层,这样计算时,权值也是用的同一个。
    """
    h_relu = self.input_linear(x).clamp(min=0)
    for _ in range(random.randint(0, 3)):
      h_relu = self.middle_linear(h_relu).clamp(min=0)
    y_pred = self.output_linear(h_relu)
    return y_pred


    # N is batch size; D_in is input dimension;
    # H is hidden dimension; D_out is output dimension.
    N, D_in, H, D_out = 64, 1000, 100, 10

    # Create random Tensors to hold inputs and outputs
    x = torch.randn(N, D_in)
    y = torch.randn(N, D_out)

    # Construct our model by instantiating the class defined above
    model = DynamicNet(D_in, H, D_out)

    # Construct our loss function and an Optimizer. Training this strange model with
    # vanilla stochastic gradient descent is tough, so we use momentum
    criterion = torch.nn.MSELoss(reduction='sum')
    optimizer = torch.optim.SGD(model.parameters(), lr=1e-4, momentum=0.9)
    for t in range(500):
      # Forward pass: Compute predicted y by passing x to the model
      y_pred = model(x)

      # Compute and print loss
      loss = criterion(y_pred, y)
      print(t, loss.item())

      # Zero gradients, perform a backward pass, and update the weights.
      optimizer.zero_grad()
      loss.backward()
      optimizer.step()

这个程序实际上是一种RNN结构,在执行过程中动态的构建计算图

References: Pytorch Documentations.

以上这篇pytorch动态网络以及权重共享实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

Python高级特性之闭包与装饰器实例详解

Python高级特性之闭包与装饰器实例详解

本文实例讲述了Python高级特性之闭包与装饰器。分享给大家供大家参考,具体如下: 闭包 1.函数参数: (1)函数名存放的是函数的地址 (2)函数名()存放的是函数内的代码 (3)...

python以环状形式组合排列图片并输出的方法

本文实例讲述了python以环状形式组合排列图片并输出的方法。分享给大家供大家参考。具体分析如下: 这段代码可以自定义一个空白画板,然后将指定的图片以圆环状的方式排列起来,用到了pil库...

详解Python 函数如何重载?

什么是函数重载?简单的理解,支持多个同名函数的定义,只是参数的个数或者类型不同,在调用的时候,解释器会根据参数的个数或者类型,调用相应的函数。 重载这个特性在很多语言中都有实现,比如 C...

python贪婪匹配以及多行匹配的实例讲解

1 非贪婪flag >>> re.findall(r"a(\d+?)", "a23b") ['2'] >>> re.findall(r...

Python实现excel转sqlite的方法

Python实现excel转sqlite的方法

本文实例讲述了Python实现excel转sqlite的方法。分享给大家供大家参考,具体如下: Python环境的安装配置就不说了,个人喜欢pydev的开发环境。 python解析exc...