pytorch动态网络以及权重共享实例

yipeiwu_com6年前Python基础

pytorch 动态网络+权值共享

pytorch以动态图著称,下面以一个栗子来实现动态网络和权值共享技术:

# -*- coding: utf-8 -*-
import random
import torch


class DynamicNet(torch.nn.Module):
  def __init__(self, D_in, H, D_out):
    """
    这里构造了几个向前传播过程中用到的线性函数
    """
    super(DynamicNet, self).__init__()
    self.input_linear = torch.nn.Linear(D_in, H)
    self.middle_linear = torch.nn.Linear(H, H)
    self.output_linear = torch.nn.Linear(H, D_out)

  def forward(self, x):
    """
    For the forward pass of the model, we randomly choose either 0, 1, 2, or 3
    and reuse the middle_linear Module that many times to compute hidden layer
    representations.

    Since each forward pass builds a dynamic computation graph, we can use normal
    Python control-flow operators like loops or conditional statements when
    defining the forward pass of the model.

    Here we also see that it is perfectly safe to reuse the same Module many
    times when defining a computational graph. This is a big improvement from Lua
    Torch, where each Module could be used only once.
    这里中间层每次向前过程中都是随机添加0-3层,而且中间层都是使用的同一个线性层,这样计算时,权值也是用的同一个。
    """
    h_relu = self.input_linear(x).clamp(min=0)
    for _ in range(random.randint(0, 3)):
      h_relu = self.middle_linear(h_relu).clamp(min=0)
    y_pred = self.output_linear(h_relu)
    return y_pred


    # N is batch size; D_in is input dimension;
    # H is hidden dimension; D_out is output dimension.
    N, D_in, H, D_out = 64, 1000, 100, 10

    # Create random Tensors to hold inputs and outputs
    x = torch.randn(N, D_in)
    y = torch.randn(N, D_out)

    # Construct our model by instantiating the class defined above
    model = DynamicNet(D_in, H, D_out)

    # Construct our loss function and an Optimizer. Training this strange model with
    # vanilla stochastic gradient descent is tough, so we use momentum
    criterion = torch.nn.MSELoss(reduction='sum')
    optimizer = torch.optim.SGD(model.parameters(), lr=1e-4, momentum=0.9)
    for t in range(500):
      # Forward pass: Compute predicted y by passing x to the model
      y_pred = model(x)

      # Compute and print loss
      loss = criterion(y_pred, y)
      print(t, loss.item())

      # Zero gradients, perform a backward pass, and update the weights.
      optimizer.zero_grad()
      loss.backward()
      optimizer.step()

这个程序实际上是一种RNN结构,在执行过程中动态的构建计算图

References: Pytorch Documentations.

以上这篇pytorch动态网络以及权重共享实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

Tensorflow 利用tf.contrib.learn建立输入函数的方法

Tensorflow 利用tf.contrib.learn建立输入函数的方法

在实际的业务中,可能会遇到很大量的特征,这些特征良莠不齐,层次不一,可能有缺失,可能有噪声,可能规模不一致,可能类型不一样,等等问题都需要我们在建模之前,先预处理特征或者叫清洗特征。那么...

Python实现图片尺寸缩放脚本

最近由于网站对图片尺寸的需要,用python写了个小脚本,方便进行图片尺寸的一些调整,特记录如下: # coding=utf-8 import Image import shut...

Python3使用PyQt5制作简单的画板/手写板实例

Python3使用PyQt5制作简单的画板/手写板实例

1.前言 版本:Python3.6.1 + PyQt5 写一个程序的时候需要用到画板/手写板,只需要最简单的那种。原以为网上到处都是,结果找了好几天,都没有找到想要的结果。 网上的要么是...

pytorch获取vgg16-feature层输出的例子

实际应用时可能比较想获取VGG中间层的输出, 那么就可以如下操作: import numpy as np import torch from torchvision import m...

Django使用AJAX调用自己写的API接口的方法

Django使用AJAX调用自己写的API接口的方法

在这个例子中,我们将使用Django编写饿了么高校外卖商家查询API接口,并且使用AJAX技术来实现API接口的使用,包括使用ajax get方法加载更多数据,使用ajax方法来更新、修...