pytorch之ImageFolder使用详解

yipeiwu_com6年前Python基础

pytorch之ImageFolder

torchvision已经预先实现了常用的Dataset,包括前面使用过的CIFAR-10,以及ImageNet、COCO、MNIST、LSUN等数据集,可通过诸如torchvision.datasets.CIFAR10来调用。在这里介绍一个会经常使用到的Dataset——ImageFolder。

ImageFolder假设所有的文件按文件夹保存,每个文件夹下存储同一个类别的图片,文件夹名为类名,其构造函数如下:

ImageFolder(root, transform=None, target_transform=None, loader=default_loader)

它主要有四个参数:

root:在root指定的路径下寻找图片

transform:对PIL Image进行的转换操作,transform的输入是使用loader读取图片的返回对象

target_transform:对label的转换

loader:给定路径后如何读取图片,默认读取为RGB格式的PIL Image对象

label是按照文件夹名顺序排序后存成字典,即{类名:类序号(从0开始)},一般来说最好直接将文件夹命名为从0开始的数字,这样会和ImageFolder实际的label一致,如果不是这种命名规范,建议看看self.class_to_idx属性以了解label和文件夹名的映射关系。

图片结构如下所示:

from torchvision import transforms as T
import matplotlib.pyplot as plt
from torchvision.datasets import ImageFolder


dataset = ImageFolder('data/dogcat_2/')

# cat文件夹的图片对应label 0,dog对应1
print(dataset.class_to_idx)

# 所有图片的路径和对应的label
print(dataset.imgs)

# 没有任何的transform,所以返回的还是PIL Image对象
#print(dataset[0][1])# 第一维是第几张图,第二维为1返回label
#print(dataset[0][0]) # 为0返回图片数据
plt.imshow(dataset[0][0])
plt.axis('off')
plt.show()

加上transform

normalize = T.Normalize(mean=[0.4, 0.4, 0.4], std=[0.2, 0.2, 0.2])
transform = T.Compose([
     T.RandomResizedCrop(224),
     T.RandomHorizontalFlip(),
     T.ToTensor(),
     normalize,
])
dataset = ImageFolder('data1/dogcat_2/', transform=transform)

# 深度学习中图片数据一般保存成CxHxW,即通道数x图片高x图片宽
#print(dataset[0][0].size())

to_img = T.ToPILImage()
# 0.2和0.4是标准差和均值的近似
a=to_img(dataset[0][0]*0.2+0.4)
plt.imshow(a)
plt.axis('off')
plt.show()

以上这篇pytorch之ImageFolder使用详解就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

python 多进程队列数据处理详解

我就废话不多说了,直接上代码吧! # -*- coding:utf8 -*- import paho.mqtt.client as mqtt from multiprocessing...

python实现sublime3的less编译插件示例

利用http://tool.oschina.net/less 提供的接口,发送请求进行远程编译.再将编译好的less,保存为同名后缀为css的文件中.第一次使用python,代码也是拼拼...

python好玩的项目—色情图片识别代码分享

python好玩的项目—色情图片识别代码分享

一、实验简介 本实验将使用 Python3 去识别图片是否为色情图片,我们会使用到 PIL 这个图像处理库,会编写算法来划分图像的皮肤区域 1.1. 知识点 Python 3 的模块的安...

Python虚拟环境Virtualenv使用教程

virtualenv用于创建独立的Python环境,多个Python相互独立,互不影响,它能够: 1. 在没有权限的情况下安装新套件 2. 不同应用可以使用不同的套件版本 3. 套件升级...

Python 获取指定文件夹下的目录和文件的实现

经常有需要扫描目录,对文件做批量处理的需求,所以对目录处理这块做了下学习和总结。Python 中扫描目录有两种方法:os.listdir 和 os.walk。 一、os.listdir...