Python 实现训练集、测试集随机划分

yipeiwu_com6年前Python基础

随机从列表中取出元素:

import random
dataSet = [[0], [1], [2], [3], [4], [5], [6], [7], [8], [9], [10]]
trainDataSet = random.sample(dataSet, 3)

以下函数,使用于我最近的一个机器学习的项目,将数据集数据按照比例随机划分成训练集数据和测试集数据:

import csv
import random
def getDataSet(proportion):
  """
    :exception
      获取训练集和测试集(将数据按比例随机划分)
    :parameter
      proportion - 测试集/数据集
    :return
      trainDataSet - 训练集
      testDataSet - 测试集
    author
      肖政宇
    modify
      2019年5月10日
  """
  dataSet = open('数据集.csv')
  dataSetReader = csv.reader(dataSet)
  """
    :exception
      将数据保存到数组
  """
  dataSet = []
  next(dataSetReader, 'none') # 跳过表头
  data = next(dataSetReader, 'none')
  while (data != 'none'):
    dataSet.append(data)
    data = next(dataSetReader, 'none')
  """
    :exception
      按照比例随机划分出训练集和测试集
  """
  dataNumber = dataSet.__len__() # 数据集数据条数
  testNumber = int(dataNumber * proportion) # 测试集数据条数
  testDataSet = [] # 测试数据集
  trainDataSet = [] # 训练数据集
 
  testDataSet = random.sample(dataSet, testNumber) # 测试集
  for testData in testDataSet: # 将已经选定的测试集数据从数据集中删除
    dataSet.remove(testData)
  trainDataSet = dataSet # 训练集
 
  return trainDataSet, testDataSet

以上这篇Python 实现训练集、测试集随机划分就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

python机器学习之神经网络(二)

python机器学习之神经网络(二)

由于Rosenblatt感知器的局限性,对于非线性分类的效果不理想。为了对线性分类无法区分的数据进行分类,需要构建多层感知器结构对数据进行分类,多层感知器结构如下: 该网络由输入层,...

Python远程开发环境部署与调试过程图解

Python远程开发环境部署与调试过程图解

这篇文章主要介绍了Python远程开发环境部署与调试过程图解,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下 一、下载相应开发工具 Py...

python交互界面的退出方法

1.在终端输入python,进入之后退出: quit() 或者 exit() 2,进入idle shell下的退出 关闭: quit() 或者 exit() 或...

python图像处理之镜像实现方法

python图像处理之镜像实现方法

本文实例讲述了python图像处理之镜像实现方法。分享给大家供大家参考。具体分析如下: 图像的镜像变化不改变图像的形状。图像的镜像变换分为三种:水平镜像、垂直镜像、对角镜像 设图像的大小...

对python中xlsx,csv以及json文件的相互转化方法详解

最近需要各种转格式,这里对相关代码作一个记录,方便日后查询。 xlsx文件转csv文件 import xlrd import csv def xlsx_to_csv(): wo...