pytorch1.0中torch.nn.Conv2d用法详解

yipeiwu_com6年前Python基础

Conv2d的简单使用

torch 包 nn 中 Conv2d 的用法与 tensorflow 中类似,但不完全一样。

在 torch 中,Conv2d 有几个基本的参数,分别是

in_channels 输入图像的深度

out_channels 输出图像的深度

kernel_size 卷积核大小,正方形卷积只为单个数字

stride 卷积步长,默认为1

padding 卷积是否造成尺寸丢失,1为不丢失

与tensorflow不一样的是,pytorch中的使用更加清晰化,我们可以使用这种方法定义输入与输出图像的深度并同时指定使用的卷积核的大小。

而我们的输入则由经由 Conv2d 定义的参数传入,如下所示:

# 定义一个输入深度为1,输出为6,卷积核大小为 3*3 的 conv1 变量
self.conv1 = nn.Conv2d(1, 6, 3)
# 传入原始输入x,以获得长宽与x相当,深度为6的卷积部分
x = self.conv1(x)

要注意的是,Conv2d中所需要的输入顺序为

batchsize, nChannels, Height, Width

其他的简单使用

同样的,与 Conv2d 类似的函数还有很多,类似 max_pool2d、relu等等,他们的使用方法与 Conv2d 极为类似,如下所示:

# relu函数的使用
F.relu(self.conv1(x))
# 池化函数的使用
F.max_pool2d(F.relu(self.conv2(x)), 2)

以上这篇pytorch1.0中torch.nn.Conv2d用法详解就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

Python基于matplotlib实现绘制三维图形功能示例

Python基于matplotlib实现绘制三维图形功能示例

本文实例讲述了Python基于matplotlib实现绘制三维图形功能。分享给大家供大家参考,具体如下: 代码一: # coding=utf-8 import numpy as np...

Sanic框架配置操作分析

本文实例讲述了Sanic框架配置操作。分享给大家供大家参考,具体如下: 简介 Sanic是一个类似Flask的Python 3.5+ Web服务器,它的写入速度非常快。除了Flask之外...

python中as用法实例分析

本文实例讲述了python中as用法。分享给大家供大家参考。具体分析如下: import some # some 为一个模组 如果想要改变被导入模组在当前模组中的名称,而不是sys...

Django rest framework实现分页的示例

Django rest framework实现分页的示例

第一种分页PageNumberPagination 基本使用 (1)urls.py urlpatterns = [ re_path('(?P<version>...

使用SAE部署Python运行环境的教程

因为 GAE 在国内访问不便,所以平时有一些小应用,我都会放在 SAE 上面, 虽然 SAE 还有很多缺陷,但算是上手比较容易的一个了,最起码文档写的不错。 开发 SAE 上的应用,我一...