pytorch1.0中torch.nn.Conv2d用法详解

yipeiwu_com6年前Python基础

Conv2d的简单使用

torch 包 nn 中 Conv2d 的用法与 tensorflow 中类似,但不完全一样。

在 torch 中,Conv2d 有几个基本的参数,分别是

in_channels 输入图像的深度

out_channels 输出图像的深度

kernel_size 卷积核大小,正方形卷积只为单个数字

stride 卷积步长,默认为1

padding 卷积是否造成尺寸丢失,1为不丢失

与tensorflow不一样的是,pytorch中的使用更加清晰化,我们可以使用这种方法定义输入与输出图像的深度并同时指定使用的卷积核的大小。

而我们的输入则由经由 Conv2d 定义的参数传入,如下所示:

# 定义一个输入深度为1,输出为6,卷积核大小为 3*3 的 conv1 变量
self.conv1 = nn.Conv2d(1, 6, 3)
# 传入原始输入x,以获得长宽与x相当,深度为6的卷积部分
x = self.conv1(x)

要注意的是,Conv2d中所需要的输入顺序为

batchsize, nChannels, Height, Width

其他的简单使用

同样的,与 Conv2d 类似的函数还有很多,类似 max_pool2d、relu等等,他们的使用方法与 Conv2d 极为类似,如下所示:

# relu函数的使用
F.relu(self.conv1(x))
# 池化函数的使用
F.max_pool2d(F.relu(self.conv2(x)), 2)

以上这篇pytorch1.0中torch.nn.Conv2d用法详解就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

python实现查询IP地址所在地

python实现查询IP地址所在地

使方法一、用IP138数据库查询域名或IP地址对应的地理位置。 #-*- coding:gbk -*- import urllib2 import re try: while...

Python基于最小二乘法实现曲线拟合示例

Python基于最小二乘法实现曲线拟合示例

本文实例讲述了Python基于最小二乘法实现曲线拟合。分享给大家供大家参考,具体如下: 这里不手动实现最小二乘,调用scipy库中实现好的相关优化函数。 考虑如下的含有4个参数的函数式:...

浅谈Python的Django框架中的缓存控制

关于缓存剩下的问题是数据的隐私性以及在级联缓存中数据应该在何处储存的问题。 通常用户将会面对两种缓存: 他或她自己的浏览器缓存(私有缓存)以及他或她的提供者缓存(公共缓存)。 公共缓存由...

在python的类中动态添加属性与生成对象

本文将通过一下几个方面来一一进行解决       1、程序的主要功能       2...

浅析Python中的多重继承

浅析Python中的多重继承

继承是面向对象编程的一个重要的方式,因为通过继承,子类就可以扩展父类的功能。 回忆一下Animal类层次的设计,假设我们要实现以下4种动物:    ...