pytorch1.0中torch.nn.Conv2d用法详解

yipeiwu_com6年前Python基础

Conv2d的简单使用

torch 包 nn 中 Conv2d 的用法与 tensorflow 中类似,但不完全一样。

在 torch 中,Conv2d 有几个基本的参数,分别是

in_channels 输入图像的深度

out_channels 输出图像的深度

kernel_size 卷积核大小,正方形卷积只为单个数字

stride 卷积步长,默认为1

padding 卷积是否造成尺寸丢失,1为不丢失

与tensorflow不一样的是,pytorch中的使用更加清晰化,我们可以使用这种方法定义输入与输出图像的深度并同时指定使用的卷积核的大小。

而我们的输入则由经由 Conv2d 定义的参数传入,如下所示:

# 定义一个输入深度为1,输出为6,卷积核大小为 3*3 的 conv1 变量
self.conv1 = nn.Conv2d(1, 6, 3)
# 传入原始输入x,以获得长宽与x相当,深度为6的卷积部分
x = self.conv1(x)

要注意的是,Conv2d中所需要的输入顺序为

batchsize, nChannels, Height, Width

其他的简单使用

同样的,与 Conv2d 类似的函数还有很多,类似 max_pool2d、relu等等,他们的使用方法与 Conv2d 极为类似,如下所示:

# relu函数的使用
F.relu(self.conv1(x))
# 池化函数的使用
F.max_pool2d(F.relu(self.conv2(x)), 2)

以上这篇pytorch1.0中torch.nn.Conv2d用法详解就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

tensorflow estimator 使用hook实现finetune方式

为了实现finetune有如下两种解决方案: model_fn里面定义好模型之后直接赋值 def model_fn(features, labels, mode, params):...

让你Python到很爽的加速递归函数的装饰器

今天我们会讲到一个[装饰器] 注记:链接“装饰器”指Python3教程中的装饰器教程。可以在这里快速了解什么是装饰器。 @functools.lru_cache——进行函数执行结果备忘,...

用Python去除图像的黑色或白色背景实例

用Python去除图像的黑色或白色背景实例

用Python去除背景,得到有效的图像 此目的是为了放入深度学习计算中来减少计算量,同时突出特征,原图像为下图,命名为1.jpg,在此去除白色背景,黑色背景同理 需要对原图像进行的处理...

django重新生成数据库中的某张表方法

今天有碰到这种情况,数据库中有张表没办法通过migration来更改, migrate时报 django.db.utils.OperationalError: (1050, “Table...

Python实现语音识别和语音合成功能

Python实现语音识别和语音合成功能

声音的本质是震动,震动的本质是位移关于时间的函数,波形文件(.wav)中记录了不同采样时刻的位移。 通过傅里叶变换,可以将时间域的声音函数分解为一系列不同频率的正弦函数的叠加,通过频率谱...