pytorch如何冻结某层参数的实现

yipeiwu_com6年前Python基础

在迁移学习finetune时我们通常需要冻结前几层的参数不参与训练,在Pytorch中的实现如下:

class Model(nn.Module):
 def __init__(self):
  super(Transfer_model, self).__init__()
  self.linear1 = nn.Linear(20, 50)
  self.linear2 = nn.Linear(50, 20)
  self.linear3 = nn.Linear(20, 2)

 def forward(self, x):
 pass

假如我们想要冻结linear1层,需要做如下操作:

model = Model()
# 这里是一般情况,共享层往往不止一层,所以做一个for循环
for para in model.linear1.parameters():
 para.requires_grad = False
# 假如真的只有一层也可以这样操作:
# model.linear1.weight.requires_grad = False

 最后我们需要将需要优化的参数传入优化器,不需要传入的参数过滤掉,所以要用到filter()函数。

optimizer = optim.Adam(filter(lambda p: p.requires_grad, model.parameters()), lr=0.1)

其它的博客中都没有讲解filter()函数的作用,在这里我简单讲一下有助于更好的理解。

filter(function, iterable)

  • function: 判断函数
  • iterable: 可迭代对象

filter() 函数用于过滤序列,过滤掉不符合条件的元素,返回一个迭代器对象,如果要转换为列表,可以使用 list() 来转换。

该接收两个参数,第一个为函数,第二个为序列,序列的每个元素作为参数传递给函数进行判,然后返回 True 或 False,最后将返回 True 的元素放到新列表中。

filter()函数将requires_grad = True的参数传入优化器进行反向传播,requires_grad = False的则被过滤掉。

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

详解pandas的外部数据导入与常用方法

外部数据导入 导入excel文件 pandas导入excel用read_excel()方法: import pandas as pd excel_file1 = pd.read_...

Windows下安装Django框架的方法简明教程

Windows下安装Django框架的方法简明教程

本文实例讲述了Windows下安装Django框架的方法。分享给大家供大家参考,具体如下: 在idea上运行Python项目时,出现了如下错误,这是因为系统中只安装了Python,没有安...

pyqt5自定义信号实例解析

pyqt5自定义信号实例解析

本文研究的主要是pyqt5自定义信号实例解析的相关内容,具体介绍如下。 PyQt5已经自动定义了很多QT内建的信号。但是在实际的使用中为了灵活使用信号与槽机制,我们可以根据需要自定义si...

Python如何快速上手? 快速掌握一门新语言的方法

那么Python如何快速上手?找来了一篇广受好评的新语言学习方法介绍,供大家参考。 听说,你决定要为你的 “技能树” 再添加一门特定的编程语言。那该怎么办呢? 在这篇文章中,作者提出了...

python实现用户登陆邮件通知的方法

本文实例讲述了python实现用户登陆邮件通知的方法。分享给大家供大家参考。具体如下: 这里写在linux计划任务里定时执行,当有新用户登陆时候发送用户名到指定邮箱通知管理员。 #!...