解决pytorch DataLoader num_workers出现的问题

yipeiwu_com6年前Python基础

最近在学pytorch,在使用数据分批训练时在导入数据是使用了 DataLoader 在参数 num_workers的设置上使程序出现运行没有任何响应的结果 ,看看代码

import torch  #导入模块
import torch.utils.data as Data

BATCH_SIZE=8 #每一批的数据量

x=torch.linspace(1,10,10) #定义X为 1 到 10 等距离大小的数
y=torch.linspace(10,1,10)

#转换成torch能识别的Dataset
torch_dataset = Data.TensorDataset( x,y) #将数据放入 torch_dataset

loader=Data.DataLoader(
    dataset=torch_dataset,   #将数据放入loader
    batch_size=BATCH_SIZE, #每个数据段大小为 BATCH_SIZE=5
    shuffle=True ,  #是否打乱数据的排布
    num_workers=2 #每次提取数据多进进程为2
    )
for epoch in range(3):
  
  for step,(batch_x,batch_y) in enumerate(loader):
    
    print('epoch',epoch,'|step:',step," | batch_x",batch_x.numpy(),

       '|batch_y:',batch_y.numpy())

(以上代码取莫烦python教学视频,教学视频中没有报错)

程序就停止成这样了

上网查询没有得到有用的东西,因为程序没有报错,就是没有任何反应,(没有反应可能跟电脑或者编译器有关,我使用的是anconda spyder)于是决定自己找找

期初我采用在语句后面加 print('1')检测程序停在了什么地方,(其实这是一种笨方法,在这里可以采用断点调试)程序停在了 for step,(batch_x,batch_y) in enumerate(loader):

我以为是enumerate的问题,查资料发现这就是一个可返回列表元素和键值的函数,不存在问题

继续排查,把目光放在了loader,于是查询了DataLoader的参数

DataLoader的函数定义如下:

DataLoader(dataset, batch_size=1, shuffle=False, sampler=None,
num_workers=0, collate_fn=default_collate, pin_memory=False,
drop_last=False)

1. dataset:加载的数据集(Dataset对象)

2. batch_size:batch size

3. shuffle::是否将数据打乱

4. sampler: 样本抽样,后续会详细介绍

5. num_workers:使用多进程加载的进程数,0代表不使用多进程

6. collate_fn: 如何将多个样本数据拼接成一个batch,一般使用默认的拼接方式即可

7. pin_memory:是否将数据保存在pin memory区,pin memory中的数据转到GPU会快一些

8. drop_last:dataset中的数据个数可能不是batch_size的整数倍,drop_last为True会将多出来不足一个batch的数据丢弃

发现我所定义的几个参数只有num_workers嫌疑最大,于是将参数值改成了默认值 0,程序可以运行了,(一把老泪纵横)

看看进程是什么鬼 发现在这里好像没啥用(具体自己上网查查)

以上这篇解决pytorch DataLoader num_workers出现的问题就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

Python基于hashlib模块的文件MD5一致性加密验证示例

本文实例讲述了Python基于hashlib模块的文件MD5一致性加密验证。分享给大家供大家参考,具体如下: 使用hashlib模块,可对文件MD5一致性加密验证: #python...

Python实现JSON反序列化类对象的示例

我们的网络协议一般是把数据转换成JSON之后再传输。之前在Java里面,实现序列化和反序列化,不管是 jackson ,还是 fastjson 都非常的简单。现在有项目需要用Python...

用Python的pandas框架操作Excel文件中的数据教程

用Python的pandas框架操作Excel文件中的数据教程

引言 本文的目的,是向您展示如何使用pandas 来执行一些常见的Excel任务。有些例子比较琐碎,但我觉得展示这些简单的东西与那些你可以在其他地方找到的复杂功能同等重要。作为额外的福利...

python私有属性和方法实例分析

本文实例分析了python的私有属性和方法。分享给大家供大家参考。具体实现方法如下: python默认的成员函数和成员变量都是公开的,并且没有类似别的语言的public,private等...

Python随机数random模块使用指南

random 模块是Python自带的模块,除了生成最简单的随机数以外,还有很多功能。 random.random() 用来生成一个0~1之间的随机浮点数,范围[0,10 >...