pytorch三层全连接层实现手写字母识别方式

yipeiwu_com5年前Python基础

先用最简单的三层全连接神经网络,然后添加激活层查看实验结果,最后加上批标准化验证是否有效

首先根据已有的模板定义网络结构SimpleNet,命名为net.py

import torch
from torch.autograd import Variable
import numpy as np
import matplotlib.pyplot as plt
from torch import nn,optim
from torch.utils.data import DataLoader
from torchvision import datasets,transforms
#定义三层全连接神经网络
class simpleNet(nn.Module):
 def __init__(self,in_dim,n_hidden_1,n_hidden_2,out_dim):#输入维度,第一层的神经元个数、第二层的神经元个数,以及第三层的神经元个数
  super(simpleNet,self).__init__()
  self.layer1=nn.Linear(in_dim,n_hidden_1)
  self.layer2=nn.Linear(n_hidden_1,n_hidden_2)
  self.layer3=nn.Linear(n_hidden_2,out_dim)
 def forward(self,x):
  x=self.layer1(x)
  x=self.layer2(x)
  x=self.layer3(x)
  return x
 
 
#添加激活函数
class Activation_Net(nn.Module):
 def __init__(self,in_dim,n_hidden_1,n_hidden_2,out_dim):
  super(NeutalNetwork,self).__init__()
  self.layer1=nn.Sequential(#Sequential组合结构
  nn.Linear(in_dim,n_hidden_1),nn.ReLU(True))
  self.layer2=nn.Sequential(
  nn.Linear(n_hidden_1,n_hidden_2),nn.ReLU(True))
  self.layer3=nn.Sequential(
  nn.Linear(n_hidden_2,out_dim))
 def forward(self,x):
  x=self.layer1(x)
  x=self.layer2(x)
  x=self.layer3(x)
  return x
#添加批标准化处理模块,皮标准化放在全连接的后面,非线性的前面
class Batch_Net(nn.Module):
 def _init__(self,in_dim,n_hidden_1,n_hidden_2,out_dim):
  super(Batch_net,self).__init__()
  self.layer1=nn.Sequential(nn.Linear(in_dim,n_hidden_1),nn.BatchNormld(n_hidden_1),nn.ReLU(True))
  self.layer2=nn.Sequential(nn.Linear(n_hidden_1,n_hidden_2),nn.BatchNormld(n_hidden_2),nn.ReLU(True))
  self.layer3=nn.Sequential(nn.Linear(n_hidden_2,out_dim))
 def forword(self,x):
  x=self.layer1(x)
  x=self.layer2(x)
  x=self.layer3(x)
  return x
  
  

训练网络,

import torch
from torch.autograd import Variable
import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline
from torch import nn,optim
from torch.utils.data import DataLoader
from torchvision import datasets,transforms
#定义一些超参数
import net
batch_size=64
learning_rate=1e-2
num_epoches=20
#预处理
data_tf=transforms.Compose(
[transforms.ToTensor(),transforms.Normalize([0.5],[0.5])])#将图像转化成tensor,然后继续标准化,就是减均值,除以方差

#读取数据集
train_dataset=datasets.MNIST(root='./data',train=True,transform=data_tf,download=True)
test_dataset=datasets.MNIST(root='./data',train=False,transform=data_tf)
#使用内置的函数导入数据集
train_loader=DataLoader(train_dataset,batch_size=batch_size,shuffle=True)
test_loader=DataLoader(test_dataset,batch_size=batch_size,shuffle=False)

#导入网络,定义损失函数和优化方法
model=net.simpleNet(28*28,300,100,10)
if torch.cuda.is_available():#是否使用cuda加速
 model=model.cuda()
criterion=nn.CrossEntropyLoss()
optimizer=optim.SGD(model.parameters(),lr=learning_rate)
import net
n_epochs=5
for epoch in range(n_epochs):
 running_loss=0.0
 running_correct=0
 print("epoch {}/{}".format(epoch,n_epochs))
 print("-"*10)
 for data in train_loader:
  img,label=data
  img=img.view(img.size(0),-1)
  if torch.cuda.is_available():
   img=img.cuda()
   label=label.cuda()
  else:
   img=Variable(img)
   label=Variable(label)
  out=model(img)#得到前向传播的结果
  loss=criterion(out,label)#得到损失函数
  print_loss=loss.data.item()
  optimizer.zero_grad()#归0梯度
  loss.backward()#反向传播
  optimizer.step()#优化
  running_loss+=loss.item()
  epoch+=1
  if epoch%50==0:
   print('epoch:{},loss:{:.4f}'.format(epoch,loss.data.item()))
 



训练的结果截图如下:

测试网络

#测试网络
model.eval()#将模型变成测试模式
eval_loss=0
eval_acc=0
for data in test_loader:
 img,label=data
 img=img.view(img.size(0),-1)#测试集不需要反向传播,所以可以在前项传播的时候释放内存,节约内存空间
 if torch.cuda.is_available():
  img=Variable(img,volatile=True).cuda()
  label=Variable(label,volatile=True).cuda()
 else:
  img=Variable(img,volatile=True)
  label=Variable(label,volatile=True)
 out=model(img)
 loss=criterion(out,label)
 eval_loss+=loss.item()*label.size(0)
 _,pred=torch.max(out,1)
 num_correct=(pred==label).sum()
 eval_acc+=num_correct.item()
print('test loss:{:.6f},ac:{:.6f}'.format(eval_loss/(len(test_dataset)),eval_acc/(len(test_dataset))))

训练的时候,还可以加入一些dropout,正则化,修改隐藏层神经元的个数,增加隐藏层数,可以自己添加。

以上这篇pytorch三层全连接层实现手写字母识别方式就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

python实现事件驱动

本文实例为大家分享了python实现事件驱动的具体代码,供大家参考,具体内容如下 EventManager事件管理类实现,大概就百来行代码左右。 # encoding: UTF-8...

python通过装饰器检查函数参数数据类型的方法

本文实例讲述了python通过装饰器检查函数参数数据类型的方法。分享给大家供大家参考。具体分析如下: 这段代码定义了一个python装饰器,通过此装饰器可以用来检查指定函数的参数是否是指...

安装Python和pygame及相应的环境变量配置(图文教程)

安装Python和pygame及相应的环境变量配置(图文教程)

Hello,Everyone! Python是个好东西!好吧,以黎某人这寒碜的赞美之词,实在上不了台面,望见谅。那我们直接来上干货吧。 第一步:下载Python安装包https://ww...

Python os模块中的isfile()和isdir()函数均返回false问题解决方法

今天在写一个linux下自动备份指定目录下的所有目录的脚本时,遇到了一个问题,由于我是需要备份目录,所以,需要判断扫描的文件是否为目录,当我用os.path.isdir()来判断的时候,...

Python异常对代码运行性能的影响实例解析

Python异常对代码运行性能的影响实例解析

前言 Python的异常处理能力非常强大,但是用不好也会带来负面的影响。我平时写程序的过程中也喜欢使用异常,虽然采取防御性的方式编码会更好,但是交给异常处理会起到偷懒作用。偶尔会想想异常...