Python 实现数据库(SQL)更新脚本的生成方法

yipeiwu_com5年前Python基础

我在工作的时候,在测试环境下使用的数据库跟生产环境的数据库不一致,当我们的测试环境下的数据库完成测试准备更新到生产环境上的数据库时候,需要准备更新脚本,真是一不小心没记下来就会忘了改了哪里,哪里添加了什么,这个真是非常让人头疼。因此我就试着用Python来实现自动的生成更新脚本,以免我这烂记性,记不住事。

  主要操作如下:

  1.在原先 basedao.py 中添加如下方法,这样旧能很方便的获取数据库的数据,为测试数据库和生产数据库做对比打下了基础。

def select_database_struts(self):
  '''
  查找当前连接配置中的数据库结构以字典集合
  '''
  sql = '''SELECT COLUMN_NAME, IS_NULLABLE, COLUMN_TYPE, COLUMN_KEY, COLUMN_COMMENT
    FROM information_schema.`COLUMNS` 
    WHERE TABLE_SCHEMA="%s" AND TABLE_NAME="{0}" '''%(self.__database)
  struts = {}
  for k in self.__primaryKey_dict.keys():
   self.__cursor.execute(sql.format(k))
   results = self.__cursor.fetchall()
   struts[k] = {}
   for result in results:
    struts[k][result[0]] = {}
    struts[k][result[0]]["COLUMN_NAME"] = result[0]
    struts[k][result[0]]["IS_NULLABLE"] = result[1]
    struts[k][result[0]]["COLUMN_TYPE"] = result[2]
    struts[k][result[0]]["COLUMN_KEY"] = result[3]
    struts[k][result[0]]["COLUMN_COMMENT"] = result[4]
  return self.__config, struts

  2.编写对比的Python脚本

'''
数据库迁移脚本, 目前支持一下几种功能:
1.生成旧数据库中没有的数据库表执行 SQL 脚本(支持是否带表数据),生成的 SQL 脚本在 temp 目录下(表名.sql)。
2.生成添加列 SQL 脚本,生成的 SQL 脚本统一放在 temp 目录下的 depoyed.sql 中。
3.生成修改列属性 SQL 脚本,生成的 SQL 脚本统一放在 temp 目录下的 depoyed.sql 中。
4.生成删除列 SQL 脚本,生成的 SQL 脚本统一放在 temp 目录下的 depoyed.sql 中。
'''
import json, os, sys
from basedao import BaseDao

temp_path = sys.path[0] + "/temp"
if not os.path.exists(temp_path):
 os.mkdir(temp_path)

def main(old, new, has_data=False):
 '''
 @old 旧数据库(目标数据库)
 @new 最新的数据库(源数据库)
 @has_data 是否生成结构+数据的sql脚本 
 '''
 clear_temp() # 先清理 temp 目录
 old_config, old_struts = old
 new_config, new_struts = new
 for new_table, new_fields in new_struts.items():
  if old_struts.get(new_table) is None:
   gc_sql(new_config["user"], new_config["password"], new_config["database"], new_table, has_data)
  else:
   cmp_table(old_struts[new_table], new_struts[new_table], new_table)

def cmp_table(old, new, table):
 '''
 对比表结构生成 sql
 '''
 old_fields = old
 new_fields = new

 sql_add_column = "ALTER TABLE `{TABLE}` ADD COLUMN `{COLUMN_NAME}` {COLUMN_TYPE} COMMENT '{COLUMN_COMMENT}';\n"
 sql_change_column = "ALTER TABLE `{TABLE}` CHANGE `{COLUMN_NAME}` `{COLUMN_NAME}` {COLUMN_TYPE} COMMENT '{COLUMN_COMMENT}';\n"
 sql_del_column = "ALTER TABLE `{TABLE}` DROP {COLUMN_NAME};"

 if old_fields != new_fields:
  f = open(sys.path[0] + "/temp/deploy.sql", "a", encoding="utf8")
  content = ""
  for new_field, new_field_dict in new_fields.items():
   old_filed_dict = old_fields.get(new_field)
   if old_filed_dict is None:
    # 生成添加列 sql
    content += sql_add_column.format(TABLE=table, **new_field_dict)
   else:
    # 生成修改列 sql
    if old_filed_dict != new_field_dict:
     content += sql_change_column.format(TABLE=table, **new_field_dict)
    pass
  # 生成删除列 sql
  for old_field, old_field_dict in old_fields.items():
   if new_fields.get(old_field) is None:
    content += sql_del_column.format(TABLE=table, COLUMN_NAME=old_field)
    
  f.write(content)
  f.close()

def gc_sql(user, pwd, db, table, has_data):
 '''
 生成 sql 文件
 '''
 if has_data:
  sys_order = "mysqldump -u%s -p%s %s %s > %s/%s.sql"%(user, pwd, db, table, temp_path, table)
 else:
  sys_order = "mysqldump -u%s -p%s -d %s %s > %s/%s.sql"%(user, pwd, db, table, temp_path, table)
 os.system(sys_order)

def clear_temp():
 '''
 每次执行的时候调用这个,先清理下temp目录下面的旧文件
 '''
 if os.path.exists(temp_path):
  files = os.listdir(temp_path)
  for file in files:
   f = os.path.join(temp_path, file)
   if os.path.isfile(f):
    os.remove(f)
 print("临时文件目录清理完成")

if __name__ == "__main__":
 test1_config = {
  "user" : "root", 
  "password" : "root",
  "database" : "test1", 
 }
 test2_config = {
  "user" : "root", 
  "password" : "root",
  "database" : "test2", 
 }
 
 test1_dao = BaseDao(**test1_config)
 test1_struts = test1_dao.select_database_struts()
 
 test2_dao = BaseDao(**test2_config)
 test2_struts = test2_dao.select_database_struts()

 main(test2_struts, test1_struts)

  目前只支持了4种SQL脚本的生成。

总结

以上所述是小编给大家介绍的Python 实现数据库(SQL)更新脚本的生成方法,希望对大家有所帮助,如果大家有任何疑问欢迎给我留言,小编会及时回复大家的!

相关文章

python读取excel表格生成erlang数据

为了将excel数据自动转换成所需要的erlang数据,听同事说使用python会很方便简单,就自学了两天python,写了一个比较粗糙的python脚本,不过能用,有什么优化的地方请指...

python使用minimax算法实现五子棋

这是一个命令行环境的五子棋程序。使用了minimax算法。 除了百度各个棋型的打分方式,所有代码皆为本人所撸。本程序结构与之前的井字棋、黑白棋一模一样。 有一点小问题,没时间弄了,就这样...

pytorch构建多模型实例

pytorch构建双模型 第一部分:构建"se_resnet152","DPN92()"双模型 import numpy as np from functools import pa...

使用python对文件中的单词进行提取的方法示例

使用python对文件中的单词进行提取的方法示例

由于需要使用一个纯单词组成的文件,在网上下载到了一个存放单词的文件,但是里面有中文的解释,那就需要做一下提取了。 文本的形式如下: 所见即所得,这个文本是有规律的,每个单词为一行,紧...

在Python的Flask框架下收发电子邮件的教程

 简述 在大多数此类教程中都会不遗余力的介绍如何使用数据库。今天我们对数据库暂且不表,而是来关注另一个在web应用中很重要的特性:如何推送邮件给用户。 在某个轻量级应用中我们可...