pytorch-神经网络拟合曲线实例

yipeiwu_com5年前Python基础

代码已经调通,跑出来的效果如下:

# coding=gbk
import torch
import matplotlib.pyplot as plt
from torch.autograd import Variable
import torch.nn.functional as F
 
'''
 Pytorch是一个拥有强力GPU加速的张量和动态构建网络的库,其主要构建是张量,所以可以把PyTorch当做Numpy
 来用,Pytorch的很多操作好比Numpy都是类似的,但是其能够在GPU上运行,所以有着比Numpy快很多倍的速度。
 训练完了,发现隐层越大,拟合的速度越是快,拟合的效果越是好
'''
 
def train():
 print('------  构建数据集  ------')
 # torch.linspace是为了生成连续间断的数据,第一个参数表示起点,第二个参数表示终点,第三个参数表示将这个区间分成平均几份,即生成几个数据
 x = torch.unsqueeze(torch.linspace(-1, 1, 100), dim=1)
 #torch.rand返回的是[0,1]之间的均匀分布 这里是使用一个计算式子来构造出一个关联结果,当然后期要学的也就是这个式子
 y = x.pow(2) + 0.2 * torch.rand(x.size())
 # Variable是将tensor封装了下,用于自动求导使用
 x, y = Variable(x), Variable(y)
 #绘图展示
 plt.scatter(x.data.numpy(), y.data.numpy())
 #plt.show()
 
 print('------  搭建网络  ------')
 #使用固定的方式继承并重写 init和forword两个类
 class Net(torch.nn.Module):
  def __init__(self,n_feature,n_hidden,n_output):
   #初始网络的内部结构
   super(Net,self).__init__()
   self.hidden=torch.nn.Linear(n_feature,n_hidden)
   self.predict=torch.nn.Linear(n_hidden,n_output)
  def forward(self, x):
   #一次正向行走过程
   x=F.relu(self.hidden(x))
   x=self.predict(x)
   return x
 net=Net(n_feature=1,n_hidden=1000,n_output=1)
 print('网络结构为:',net)
 
 print('------  启动训练  ------')
 loss_func=F.mse_loss
 optimizer=torch.optim.SGD(net.parameters(),lr=0.001)
 
 #使用数据 进行正向训练,并对Variable变量进行反向梯度传播 启动100次训练
 for t in range(10000):
  #使用全量数据 进行正向行走
  prediction=net(x)
  loss=loss_func(prediction,y)
  optimizer.zero_grad() #清除上一梯度
  loss.backward() #反向传播计算梯度
  optimizer.step() #应用梯度
 
  #间隔一段,对训练过程进行可视化展示
  if t%5==0:
   plt.cla()
   plt.scatter(x.data.numpy(),y.data.numpy()) #绘制真是曲线
   plt.plot(x.data.numpy(),prediction.data.numpy(),'r-',lw=5)
   plt.text(0.5,0,'Loss='+str(loss.data[0]),fontdict={'size':20,'color':'red'})
   plt.pause(0.1)
 plt.ioff()
 plt.show()
 print('------  预测和可视化  ------')
 
if __name__=='__main__':
 train()

以上这篇pytorch-神经网络拟合曲线实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

python实现图片处理和特征提取详解

python实现图片处理和特征提取详解

这是一张灵异事件图。。。开个玩笑,这就是一张普通的图片。 毫无疑问,上面的那副图画看起来像一幅电脑背景图片。这些都归功于我的妹妹,她能够将一些看上去奇怪的东西变得十分吸引眼球。然而,我...

深入理解Python对Json的解析

深入理解Python对Json的解析

Json简介 JSON(JavaScript Object Notation) 是一种轻量级的数据交换格式。它基于JavaScript(Standard ECMA-262 3rd Ed...

Django框架静态文件使用/中间件/禁用ip功能实例详解

Django框架静态文件使用/中间件/禁用ip功能实例详解

本文实例讲述了Django框架静态文件使用/中间件/禁用ip功能。分享给大家供大家参考,具体如下: 静态文件 一、静态文件的使用 静态文件:网页中使用的css,js,图片 静态文件的使用...

Python设置在shell脚本中自动补全功能的方法

本篇博客将会简短的介绍,如何在ubuntu中设置python自动补全功能。 需求:由于python中的内建函数较多,我们在百纳乘时,可能记不清函数的名字,同时自动补全功能,加快了我们开发...

Python使用百度API上传文件到百度网盘代码分享

关于如何获取 access_token 这个可以自己查百度开放的OAuth 2.0 的 API。这里不做介绍。 第三方 Python 库 poster 复制代码 代码如下: # cod...