python opencv根据颜色进行目标检测的方法示例

yipeiwu_com5年前Python基础

颜色目标检测就是根据物体的颜色快速进行目标定位。使用cv2.inRange函数设定合适的阈值,即可以选出合适的目标。

建立项目colordetect.py,代码如下:

#! /usr/bin/env python
# -*- coding: utf-8 -*-

import numpy as np
import cv2

def colorDetect():
 image = cv2.imread('./1.png')
 # 使用RGB颜色空间检测红 蓝 黄 灰,设置合适的阈值
 boundaries = [
 ([17, 15, 100], [50, 56, 200]),
 ([86, 31, 4], [220, 88, 50]),
 ([25, 146, 190], [62, 174, 250]),
 ([103, 86, 65], [145, 133, 128])
 ]

 for lower, upper in boundaries:
 lower = np.array(lower, dtype='uint8')
 upper = np.array(upper, dtype='uint8')
 # 低于lower和高于upper的像素为黑色,lower-upper之间的像素为白色
 mask = cv2.inRange(image, lower, upper)
 # 利用蒙版,进行图像的逻辑与运算
 output = cv2.bitwise_and(image, image, mask=mask)

 cv2.imshow('image', np.hstack([image, output]))
 cv2.waitKey(0)
 cv2.destroyAllWindows()

def main():
 colorDetect()

if __name__ == "__main__":
 main()

定义RGB颜色列表:

boundaries = [
 ([17, 15, 100], [50, 56, 200]),
 ([86, 31, 4], [220, 88, 50]),
 ([25, 146, 190], [62, 174, 250]),
 ([103, 86, 65], [145, 133, 128])
]

该部分([17, 15, 100], [50, 56, 200]),表示图像像素R>=100, B>=15, G>=15和R<=200, B<=56, G<=50的像素将视为红色。

执行代码,结果如下:

总结

要检测图像中颜色,第一件事要做的就是定义像素值的上限和下限。不同的颜色空间具有不同上下限值,定义了上限和下限后,就可以调用cv2.inRange方法返回一个mask,将该mask与图像进行逻辑与bitwise_and就可以得到该图像。

参考资料
https://www.pyimagesearch.com/

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

如何基于python测量代码运行时间

这篇文章主要介绍了如何基于python测量代码运行时间,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下 Python 社区有句俗语: “...

pyqt5 QProgressBar清空进度条的实例

在停止和开始进度条的同时,将进度条清空的动作也是常常需要用到的。 具体用法如下: self.progressBar = QProgressBar(self) self.progres...

Python进程池Pool应用实例分析

本文实例讲述了Python进程池Pool应用。分享给大家供大家参考,具体如下: 当需要创建的子进程数量不多时,可以直接利用multiprocessing中的Process动态成生多个进程...

树莓派极简安装OpenCv的方法步骤

树莓派极简安装OpenCv的方法步骤

因为最近在开发使用树莓派+usb摄像头识别模块,打算用OpenCv,发现网上的树莓派OpenCv安装教程都过于繁琐占用内存大,我经过自己的实验,发现出了一种非常简易快捷的方式,网速OK的...

Python selenium实现微博自动登录的示例代码

Python selenium实现微博自动登录的示例代码

(一)编程环境 操作系统:Win 10 编程语言:Python 3.6 (二)安装selenium 这里使用selenium实现。 如果没有安装过python的seleni...