python opencv根据颜色进行目标检测的方法示例

yipeiwu_com5年前Python基础

颜色目标检测就是根据物体的颜色快速进行目标定位。使用cv2.inRange函数设定合适的阈值,即可以选出合适的目标。

建立项目colordetect.py,代码如下:

#! /usr/bin/env python
# -*- coding: utf-8 -*-

import numpy as np
import cv2

def colorDetect():
 image = cv2.imread('./1.png')
 # 使用RGB颜色空间检测红 蓝 黄 灰,设置合适的阈值
 boundaries = [
 ([17, 15, 100], [50, 56, 200]),
 ([86, 31, 4], [220, 88, 50]),
 ([25, 146, 190], [62, 174, 250]),
 ([103, 86, 65], [145, 133, 128])
 ]

 for lower, upper in boundaries:
 lower = np.array(lower, dtype='uint8')
 upper = np.array(upper, dtype='uint8')
 # 低于lower和高于upper的像素为黑色,lower-upper之间的像素为白色
 mask = cv2.inRange(image, lower, upper)
 # 利用蒙版,进行图像的逻辑与运算
 output = cv2.bitwise_and(image, image, mask=mask)

 cv2.imshow('image', np.hstack([image, output]))
 cv2.waitKey(0)
 cv2.destroyAllWindows()

def main():
 colorDetect()

if __name__ == "__main__":
 main()

定义RGB颜色列表:

boundaries = [
 ([17, 15, 100], [50, 56, 200]),
 ([86, 31, 4], [220, 88, 50]),
 ([25, 146, 190], [62, 174, 250]),
 ([103, 86, 65], [145, 133, 128])
]

该部分([17, 15, 100], [50, 56, 200]),表示图像像素R>=100, B>=15, G>=15和R<=200, B<=56, G<=50的像素将视为红色。

执行代码,结果如下:

总结

要检测图像中颜色,第一件事要做的就是定义像素值的上限和下限。不同的颜色空间具有不同上下限值,定义了上限和下限后,就可以调用cv2.inRange方法返回一个mask,将该mask与图像进行逻辑与bitwise_and就可以得到该图像。

参考资料
https://www.pyimagesearch.com/

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

详解Python中用于计算指数的exp()方法

 exp()方法返回指数x: ex. 语法 以下是exp()方法的语法: import math math.exp( x ) 注意:此函数是无法直接访问的,所以我们...

使用python删除nginx缓存文件示例(python文件操作)

调用时输入参数如:  www.jb51.net/表示删除www.jb51.net首页的缓存, www.jb51.net/test.php就表示删除/test.php的缓存复制代...

用Django写天气预报查询网站

用Django写天气预报查询网站

创建项目 创建工程项目如下所示: 设置文件settings.py中的设置主要有两个 1.注册app 2.设置templates的路径 前面的文章已经介绍过多次如何设置了,此处不再做详...

django表单的Widgets使用详解

前言 不要将Widget与表单的fields字段混淆。表单字段负责验证输入并直接在模板中使用。而Widget负责渲染网页上HTML表单的输入元素和提取提交的原始数据。widget是字段的...

Python 的 Socket 编程

Socket是网络应用的基础。而Python使得网络socket编程入门变得超级简单。在这篇简介里面我们将创建一个简单服务器,用于接受和相应客户端程序的请求。 由于本人最近对 Linux...