Python实现CNN的多通道输入实例

yipeiwu_com6年前Python基础

CNN可以同时进行多通道的输入,例如一张彩色图片可以分解成RGB三个通道输入给CNN,当使用自己的数据集时,可以通过numpy来实现数据的多通道输入。

假设我们有两个组数据a和b:

a = np.linspace(1,100,100)
b = np.linsapce(-1,-100,100)

然后将a和b转变成四维数组,TensorFlow接收的数据时四维数组

a = a.reshape(4,1,5,5)
b = b.reshape(4,1,5,5)

这样我们就得到了两个batch_size = 4, channel = 1, width = 5, high = 5的四维数组,然后

a = a.transpose(1,0,2,3)
b = b.transpose(1,0,2,3)

将a和b的维度参数变成[1,4,5,5],然后使用np.vstack()函数将两个数组在通道数上叠加

c = np.vstack((a,b))

最后再次使用.transpose()函数将叠加后的四维数组转换为TensorFlow接受的四维数组

c = c.transpose(1,2,3,0)

这时c就变成了[4,5,5,2],即batch_size = 4, width = 5, high = 5, channel = 2的四维数组。

以上这篇Python实现CNN的多通道输入实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

python使用ddt过程中遇到的问题及解决方案【推荐】

python使用ddt过程中遇到的问题及解决方案【推荐】

前言: 在使用DDT数据驱动+HTMLTestRunner输出测试报告时遇到过2个问题: 1、生成的测试报告中,用例名称后有dict() -> new empty dictiona...

通过pykafka接收Kafka消息队列的方法

没有Kafka环境,所以也没有进行验证。感觉今后应该能用到,所以借抄在此,备查。 pykafka使用示例,自动消费最新消息,不重复消费: # -* coding:utf8 *- fr...

python 直接赋值和copy的区别详解

直接赋值和copy的区别: 直接赋值:其实就是对象的引用(别名)。 浅拷贝(copy):拷贝父对象,不会拷贝对象的内部的子对象。 深拷贝(deepcopy): copy 模...

pytorch nn.Conv2d()中的padding以及输出大小方式

我就废话不多说了,直接上代码吧! conv1=nn.Conv2d(1,2,kernel_size=3,padding=1) conv2=nn.Conv2d(1,2,kernel_si...

详解pandas如何去掉、过滤数据集中的某些值或者某些行?

详解pandas如何去掉、过滤数据集中的某些值或者某些行?

摘要在进行数据分析与清理中,我们可能常常需要在数据集中去掉某些异常值。具体来说,看看下面的例子。 0.导入我们需要使用的包 import pandas as pd pandas是很常...