np.dot()函数的用法详解

yipeiwu_com5年前Python基础

基本简介

dot函数为numpy库下的一个函数,主要用于矩阵的乘法运算,其中包括:向量内积、多维矩阵乘法和矩阵与向量的乘法。

1. 向量内积

向量其实是一维的矩阵,两个向量进行内积运算时,需要保证两个向量包含的元素个数是相同的。

例1:

import numpy as np

x = np.array([1, 2, 3, 4, 5, 6, 7])
y = np.array([2, 3, 4, 5, 6, 7, 8])
result = np.dot(x, y)
print(result)

输出结果:

168

计算过程就是将向量中对应元素相乘,再相加所得。即普通的向量乘法运算。

2. 矩阵乘法运算

两个矩阵(x, y)如果可以进行乘法运算,需要满足以下条件:
x为 m×n 阶矩阵,y为 n×p 阶矩阵,
则相乘的结果 result 为 m×p 阶矩阵。

例2:

import numpy as np

x = np.array([[1, 2, 3],
   [3, 4, 4]])
y = np.array([[0, 1, 1, 1],
   [1, 2, 0, 1],
   [0, 0, 2, 1]])
result = np.dot(x, y)

print(result)
print("x阶数:" + str(x.shape))
print("y阶数:" + str(y.shape))
print("result阶数:" + str(result.shape))

结果为:

[[ 2  5  7  6]
 [ 4 11 11 11]]
x阶数:(2, 3)
y阶数:(3, 4)
result阶数:(2, 4)

dot(x, y)不等于dot(y, x),矩阵乘法不满足交换律

例3:

import numpy as np

x = np.array([[1, 2],
   [3, 4]])
y = np.array([[2, 2],
   [1, 2]])
result1 = np.dot(x, y)
result2 = np.dot(y, x)

print("result1 = " + str(result1))
print("result2 = " + str(result2))

结果为:

result1 = [[ 4  6]
           [10 14]]
result2 = [[ 8 12]
           [ 7 10]]

如果不满足运算前提,都不可以运算。例2的dot(y,x)不满足运算条件,因此运算会报错。

例4:

import numpy as np

x = np.array([[1, 2, 3],
   [3, 4, 4]])
y = np.array([[0, 1, 1, 1],
   [1, 2, 0, 1],
   [0, 0, 2, 1]])
result = np.dot(y, x)

print(result)

结果为:

Traceback (most recent call last):
  File "numpy1.py", line 96, in <module>
    result = np.dot(y,x)
  File "<__array_function__ internals>", line 6, in dot
ValueError: shapes (3,4) and (2,3) not aligned: 4 (dim 1) != 2 (dim 0)

3. 矩阵与向量乘法

矩阵x为m×n阶,向量y为n阶向量,则矩阵x和向量y可以进行乘法运算,结果为m阶向量。进行运算时,会首先将后面一项进行自动转置操作,之后再进行乘法运算。

例5:

import numpy as np

x = np.array([[1, 2, 3],
   [3, 4, 4]])
y = np.array([1, 2, 3])
result = np.dot(x, y)

print(result)
print("x阶数:" + str(x.shape))
print("y阶数:" + str(y.shape))
print("result阶数:" + str(result.shape))

结果为:

[14 23]
x阶数:(2, 3)
y阶数:(3,)
result阶数:(2,)

例6:仍然不满足交换律

import numpy as np

x = np.array([[1, 2, 3],
   [3, 4, 4],
   [0, 1, 1]])
y = np.array([1, 2, 3])
result1 = np.dot(x, y) # 1×1 + 2×2 + 3×3 = 14(result1的第一个元素)
result2 = np.dot(y, x) # 1×1 + 2×3 + 3×0 = 7 (result2的第一个元素)

print("result1 = " + str(result1))
print("result2 = " + str(result2))

结果为:

result1 = [14 23  5]
result2 = [ 7 13 14]

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

centos系统升级python 2.7.3

首先下载源tar包 可利用linux自带下载工具wget下载,如下所示: wget http://www.python.org/ftp/python/2.7.3/Python-2.7...

python 多线程中子线程和主线程相互通信方法

需求:主线程开启了多个线程去干活,每个线程需要完成的时间不同,但是在干完活以后都要通知给主线程 下面上代码: #!/usr/bin/python # coding:utf8 '''...

python使用Turtle库绘制动态钟表

python使用Turtle库绘制动态钟表

Python函数库众多,而且在不断更新,所以学习这些函数库最有效的方法,就是阅读Python官方文档。同时借助Google和百度。 本文介绍的turtle库对应的官方文档地址 绘制动态钟...

python使用yield压平嵌套字典的超简单方法

python使用yield压平嵌套字典的超简单方法

我们经常遇到各种字典套字典的数据,例如: nest_dict = { 'a': 1, 'b': { 'c': 2, 'd': 3, 'e': {'f...

Python入门教程1. 基本运算【四则运算、变量、math模块等】 原创

在熟悉了Python的基本安装与环境配置之后,我们来看看Python的基本运算操作。 1. 基本运算 >>>6 # 这里的‘#'是注释符号,不参与运算 6 >...