Pytorch 实现计算分类器准确率(总分类及子分类)

yipeiwu_com5年前Python基础

分类器平均准确率计算:

correct = torch.zeros(1).squeeze().cuda()
total = torch.zeros(1).squeeze().cuda()
for i, (images, labels) in enumerate(train_loader):
      images = Variable(images.cuda())
      labels = Variable(labels.cuda())

      output = model(images)

      prediction = torch.argmax(output, 1)
      correct += (prediction == labels).sum().float()
      total += len(labels)
acc_str = 'Accuracy: %f'%((correct/total).cpu().detach().data.numpy())

分类器各个子类准确率计算:

correct = list(0. for i in range(args.class_num))
total = list(0. for i in range(args.class_num))
for i, (images, labels) in enumerate(train_loader):
      images = Variable(images.cuda())
      labels = Variable(labels.cuda())

      output = model(images)

      prediction = torch.argmax(output, 1)
      res = prediction == labels
      for label_idx in range(len(labels)):
        label_single = label[label_idx]
        correct[label_single] += res[label_idx].item()
        total[label_single] += 1
 acc_str = 'Accuracy: %f'%(sum(correct)/sum(total))
 for acc_idx in range(len(train_class_correct)):
      try:
        acc = correct[acc_idx]/total[acc_idx]
      except:
        acc = 0
      finally:
        acc_str += '\tclassID:%d\tacc:%f\t'%(acc_idx+1, acc)

以上这篇Pytorch 实现计算分类器准确率(总分类及子分类)就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

python3+PyQt5实现柱状图

python3+PyQt5实现柱状图

本文通过Python3+pyqt5实现了python Qt GUI 快速编程的16章的excise例子。 #!/usr/bin/env python3 import random...

闭包在python中的应用之translate和maketrans用法详解

相对来说python对字符串的处理是比较高效的,方法也有很多。其中maketrans和translate两个方法被应用的很多,本文就针对这两个方法的用法做一总结整理。 首先让我们先回顾下...

python实现最大子序和(分治+动态规划)

给定一个整数数组 nums ,找到一个具有最大和的连续子数组(子数组最少包含一个元素),返回其最大和。 示例: 输入: [-2,1,-3,4,-1,2,1,-5,4], 输出:...

pandas Dataframe行列读取的实例

如下所示: import matplotlib.pyplot as plt import tkinter import numpy as np import pandas as...

Python轻量级ORM框架Peewee访问sqlite数据库的方法详解

本文实例讲述了Python轻量级ORM框架Peewee访问sqlite数据库的方法。分享给大家供大家参考,具体如下: ORM框架就是 object relation model,对象关系...