Python中对元组和列表按条件进行排序的方法示例

yipeiwu_com5年前Python基础

在python中对一个元组排序

我的同事Axel Hecht 给我展示了一些我所不知道的关于python排序的东西。 在python里你可以对一个元组进行排序。例子是最好的说明:

>>> items = [(1, 'B'), (1, 'A'), (2, 'A'), (0, 'B'), (0, 'a')]
>>> sorted(items)
[(0, 'B'), (0, 'a'), (1, 'A'), (1, 'B'), (2, 'A')]

默认情况下内置的sort和sorted函数接收的参数是元组时,他将会先按元组的第一个元素进行排序再按第二个元素进行排序。 然而,注意到结果中(0, 'B')在(0, 'a')的前面。这是因为大写字母B的ASCII编码比a小。然而,假设你想要一些更人性的排序并且不关注大小写。你或许会这么做:

>>> sorted(items, key=str.lower)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: descriptor 'lower' requires a 'str' object but received a 'tuple'

我们将会得到一个错误,因为他不能正确处理元组的第一部分。(注:原文作者估计想说元组中第一项是数字,不能使用lower这个方法;正确的原因提示的很明显了,是因为你传递的是一个元组,而元组是没有lower这个方法的)

我们可以试着写一个lambda函数(eg.sorted(items, key=lambda x: x.lower() if isinstance(x, str) else x)),他将不会工作因为你只处理了元组的一个元素。(注:同上面,作者这么做必然是错的,思考给这个lambda传一个元组,返回的是什么?)

言归正传,下面就是你应该怎么做的方法。一个lambda,它会返回一个元组:

>>> sorted(items, key=lambda x: (x[0], x[1].lower()))
[(0, 'a'), (0, 'B'), (1, 'A'), (1, 'B'), (2, 'A')]

现在你完成了它!谢谢Axel的分享!

我确信你知道你可以倒序排列,仅仅使用sorted(items, reverse=True, …),但是你怎么根据关键字来进行不同的排序?

使用lambda函数返回元组的技巧,下面是一个我们排序一个稍微高级的数据结构:

>>> peeps = [{'name': 'Bill', 'salary': 1000}, {'name': 'Bill', 'salary': 500}, {'name': 'Ted', 'salary': 500}]

现在,使用lambda函数返回一个元组的特性来排序:

>>> sorted(peeps, key=lambda x: (x['name'], x['salary']))
[{'salary': 500, 'name': 'Bill'}, {'salary': 1000, 'name': 'Bill'}, {'salary': 500, 'name': 'Ted'}]

很有意思,对吧?Bill 在Ted的前面,并且500在1000的前面。但是如何在相同的 name 下,对 salary 反向排序?很简单,对它取反:

>>> sorted(peeps, key=lambda x: (x['name'], -x['salary']))
[{'salary': 1000, 'name': 'Bill'}, {'salary': 500, 'name': 'Bill'}, {'salary': 500, 'name': 'Ted'}]

问题:将列表[[1, 2, 3], [4, 5, 6], [7, 8, 9]]排序为[[1, 4, 7], [2, 5, 8], [3, 6, 9]]
分析:

1.转变过程如下:

1 2 3          1 4 7
4 5 6   —> 2 5 8
7 8 9          3 6 9

可以将变换过程看成是原二维数组行(row)变成新数组的列(column),即抽出原数组第一行(row)作为第一列(column),第二行(row)作为第二列(column)…当然也可以将变换过程看成是原数组的列变为新数组的行,限于时间,就暂不考虑这种实现方式。
2.最原始的做法,写两个for循环,外层循环依次迭代数组的行(row),内层循环迭代数组的列(column),来实现这个反转过程,将原数组第一行(row)作为第一列(column),第二行(row)作为第二列(column),过程如下:

In [7]: l = [[1, 2, 3], [4, 5, 6], [7, 8, 9]]

In [8]: len_row = 3

In [9]: len_col = 3

In [10]: temp = [[],[],[]]

In [11]: for row in l:
  ....:   for i in range(len_col):
  ....:     temp[i].append(row[i])
  ....:   print temp
  ....:
[[1], [2], [3]]
[[1, 4], [2, 5], [3, 6]]
[[1, 4, 7], [2, 5, 8], [3, 6, 9]]

In [12]:

当然,还可以使用列表推导来做,原理和上面一样,外层迭代row,内层迭代col,生成新的列表:

In [100]: l
Out[100]: [[1, 2, 3], [4, 5, 6], [7, 8, 9]]

In [101]: [[row[col] for row in l] for col in range(len(l[0])) ]
Out[101]: [[1, 4, 7], [2, 5, 8], [3, 6, 9]]

最后,对这个题目,用zip也可以达到同样的目的:

In [104]: l
Out[104]: [[1, 2, 3], [4, 5, 6], [7, 8, 9]]

In [105]: zip(*l)
Out[105]: [(1, 4, 7), (2, 5, 8), (3, 6, 9)]

In [106]: map(list,zip(*l))
Out[106]: [[1, 4, 7], [2, 5, 8], [3, 6, 9]]

*这个符号和列表配合有解压的意思,如l=[[1, 2, 3], [4, 5, 6], [7, 8, 9]],则我理解*l就变成了[1, 2, 3], [4, 5, 6], [7, 8, 9]这样三个值,所以zip(*l)和zip([1, 2, 3], [4, 5, 6], [7, 8, 9])的结果才会是一样的,如下:

In [17]: l=[[1, 2, 3], [4, 5, 6], [7, 8, 9]]

In [18]: zip([1, 2, 3], [4, 5, 6], [7, 8, 9])
Out[18]: [(1, 4, 7), (2, 5, 8), (3, 6, 9)]

In [19]: zip(*l)
Out[19]: [(1, 4, 7), (2, 5, 8), (3, 6, 9)]

In [20]:

相关文章

Django学习笔记之ORM基础教程

Django学习笔记之ORM基础教程

ORM简介 ORM概念 对象关系映射(Object Relational Mapping,简称ORM)模式是一种为了解决面向对象与关系数据库存在的互不匹配的现象的技术。 简单的说,OR...

使用Python编写一个在Linux下实现截图分享的脚本的教程

引子 Linux下不支持QQ等功能丰富的IM,虽然可以通过wine运行QQ2012,但是还是喜欢在gtalk群中聊天,gtalk群不支持图片方式,这就要靠我们大家自己来解决了,eleve...

用Python编写脚本使IE实现代理上网的教程

厂里上个网需要设置代理服务器,切换各种环境『包括但不仅限于开发环境、QA、预上线、验收、生产环境、压力测试、Demo……』都需要给浏览器设置不同的代理服务器。 虽然俺有神器Firefox...

Python中shape计算矩阵的方法示例

本文实例讲述了Python中shape计算矩阵的方法。分享给大家供大家参考,具体如下: 看到机器学习算法时,注意到了shape计算矩阵的方法接下来就讲讲我的理解吧 >>&...

在python中做正态性检验示例

利用观测数据判断总体是否服从正态分布的检验称为正态性检验,它是统计判决中重要的一种特殊的拟合优度假设检验。 直方图初判 :直方图 + 密度线 QQ图判断:(s_r.index - 0.5...