浅谈Tensorflow 动态双向RNN的输出问题

yipeiwu_com6年前Python基础

tf.nn.bidirectional_dynamic_rnn()

函数:

def bidirectional_dynamic_rnn(
  cell_fw, # 前向RNN
  cell_bw, # 后向RNN
  inputs, # 输入
  sequence_length=None,# 输入序列的实际长度(可选,默认为输入序列的最大长度)
  initial_state_fw=None, # 前向的初始化状态(可选)
  initial_state_bw=None, # 后向的初始化状态(可选)
  dtype=None, # 初始化和输出的数据类型(可选)
  parallel_iterations=None,
  swap_memory=False,
  time_major=False,
  # 决定了输入输出tensor的格式:如果为true, 向量的形状必须为 `[max_time, batch_size, depth]`.
  # 如果为false, tensor的形状必须为`[batch_size, max_time, depth]`.
  scope=None
)

其中,

outputs为(output_fw, output_bw),是一个包含前向cell输出tensor和后向cell输出tensor组成的元组。假设

time_major=false,tensor的shape为[batch_size, max_time, depth]。实验中使用tf.concat(outputs, 2)将其拼接。

output_states为(output_state_fw, output_state_bw),包含了前向和后向最后的隐藏状态的组成的元组。

output_state_fw和output_state_bw的类型为LSTMStateTuple。

LSTMStateTuple由(c,h)组成,分别代表memory cell和hidden state。

返回值:

元组:(outputs, output_states)

这里还有最后的一个小问题,output_states是一个元组的元组,处理方法是用c_fw,h_fw = output_state_fw和c_bw,h_bw = output_state_bw,最后再分别将c和h状态concat起来,用tf.contrib.rnn.LSTMStateTuple()函数生成decoder端的初始状态

def encoding_layer(rnn_size,sequence_length,num_layers,rnn_inputs,keep_prob):
  # rnn_size: rnn隐层节点数量
  # sequence_length: 数据的序列长度
  # num_layers:堆叠的rnn cell数量
  # rnn_inputs: 输入tensor
  # keep_prob:
  '''Create the encoding layer'''
  for layer in range(num_layers):
    with tf.variable_scope('encode_{}'.format(layer)):
      cell_fw = tf.contrib.rnn.LSTMCell(rnn_size,initializer=tf.random_uniform_initializer(-0.1,0.1,seed=2))
      cell_fw = tf.contrib.rnn.DropoutWrapper(cell_fw,input_keep_prob=keep_prob)
 
      cell_bw = tf.contrib.rnn.LSTMCell(rnn_size,initializer=tf.random_uniform_initializer(-0.1,0.1,seed=2))
      cell_bw = tf.contrib.rnn.DropoutWrapper(cell_bw,input_keep_prob = keep_prob)
 
      enc_output,enc_state = tf.nn.bidirectional_dynamic_rnn(cell_fw,cell_bw,
                                  rnn_inputs,sequence_length,dtype=tf.float32)
 
  # join outputs since we are using a bidirectional RNN
  enc_output = tf.concat(enc_output,2) 
  return enc_output,enc_state

tf.nn.dynamic_rnn()

tf.nn.dynamic_rnn的返回值有两个:outputs和state

为了描述输出的形状,先介绍几个变量,batch_size是输入的这批数据的数量,max_time就是这批数据中序列的最长长度,如果输入的三个句子,那max_time对应的就是最长句子的单词数量,cell.output_size其实就是rnn cell中神经元的个数。

例子来说明其用法,假设你的RNN的输入input是[2,20,128],其中2是batch_size,20是文本最大长度,128是embedding_size,可以看出,有两个example,我们假设第二个文本长度只有13,剩下的7个是使用0-padding方法填充的。dynamic返回的是两个参数:outputs,state,其中outputs是[2,20,128],也就是每一个迭代隐状态的输出,state是由(c,h)组成的tuple,均为[batch,128]。

outputs. outputs是一个tensor

如果time_major==True,outputs形状为 [max_time, batch_size, cell.output_size ](要求rnn输入与rnn输出形状保持一致)

如果time_major==False(默认),outputs形状为 [ batch_size, max_time, cell.output_size ]

state. state是一个tensor。state是最终的状态,也就是序列中最后一个cell输出的状态。一般情况下state的形状为 [batch_size, cell.output_size ],但当输入的cell为BasicLSTMCell时,state的形状为[2,batch_size, cell.output_size ],其中2也对应着LSTM中的cell state和hidden state。

这里有关于LSTM的结构问题:

以上这篇浅谈Tensorflow 动态双向RNN的输出问题就是小编分享给大家的全部内容了,希望能给大家一个参考。

相关文章

python用线性回归预测股票价格的实现代码

python用线性回归预测股票价格的实现代码

线性回归在整个财务中广泛应用于众多应用程序中。在之前的教程中,我们使用普通最小二乘法(OLS)计算了公司的beta与相对索引的比较。现在,我们将使用线性回归来估计股票价格。 线性回归是一...

使用Python中PDB模块中的命令来调试Python代码的教程

你有多少次陷入不得不更改别人代码的境地?如果你是一个开发团队的一员,那么你遇到上述境地的次数比你想要的还要多。然而,Python中有一个整洁的调试特性(像其他大多数语言一样),在这种情况...

python编程开发之类型转换convert实例分析

本文实例讲述了python编程开发之类型转换convert。分享给大家供大家参考,具体如下: 在python的开发过程中,难免会遇到类型转换,这里给出常见的类型转换demo:  ...

Python迭代器与生成器用法实例分析

本文实例讲述了Python迭代器与生成器用法。分享给大家供大家参考,具体如下: 迭代器,迭代的工具 什么是迭代器? 指的是一个重复的过程,每一次重复称为一次迭代,并且每一次重复的结果是...

用sqlalchemy构建Django连接池的实例

都知道django每次请求都会连接数据库和释放数据库连接。Django为每个请求使用新的数据库连接。一开始这个方法行得通。然而随着服务器上的负载的增加,创建/销毁连接数据库开始花大量的时...