python实现几种归一化方法(Normalization Method)

yipeiwu_com6年前Python基础

数据归一化问题是数据挖掘中特征向量表达时的重要问题,当不同的特征成列在一起的时候,由于特征本身表达方式的原因而导致在绝对数值上的小数据被大数据“吃掉”的情况,这个时候我们需要做的就是对抽取出来的features vector进行归一化处理,以保证每个特征被分类器平等对待。下面我描述几种常见的Normalization Method,并提供相应的python实现(其实很简单):

1、(0,1)标准化:

这是最简单也是最容易想到的方法,通过遍历feature vector里的每一个数据,将Max和Min的记录下来,并通过Max-Min作为基数(即Min=0,Max=1)进行数据的归一化处理:


LaTex:{x}_{normalization}=\frac{x-Min}{Max-Min}

Python实现:

def MaxMinNormalization(x,Max,Min):
	x = (x - Min) / (Max - Min);
	return x;

找大小的方法直接用np.max()和np.min()就行了,尽量不要用python内建的max()和min(),除非你喜欢用List管理数字。

2、Z-score标准化:

这种方法给予原始数据的均值(mean)和标准差(standard deviation)进行数据的标准化。经过处理的数据符合标准正态分布,即均值为0,标准差为1,这里的关键在于复合标准正态分布,个人认为在一定程度上改变了特征的分布,关于使用经验上欢迎讨论,我对这种标准化不是非常地熟悉,转化函数为:


LaTex:{x}_{normalization}=\frac{x-\mu }{\sigma }

Python实现:

def Z_ScoreNormalization(x,mu,sigma):
	x = (x - mu) / sigma;
	return x;

这里一样,mu(即均值)用np.average(),sigma(即标准差)用np.std()即可。

3、Sigmoid函数

Sigmoid函数是一个具有S形曲线的函数,是良好的阈值函数,在(0, 0.5)处中心对称,在(0, 0.5)附近有比较大的斜率,而当数据趋向于正无穷和负无穷的时候,映射出来的值就会无限趋向于1和0,是个人非常喜欢的“归一化方法”,之所以打引号是因为我觉得Sigmoid函数在阈值分割上也有很不错的表现,根据公式的改变,就可以改变分割阈值,这里作为归一化方法,我们只考虑(0, 0.5)作为分割阈值的点的情况:


LaTex:{x}_{normalization}=\frac{1}{1+{e}^{-x}}

Python实现:

def sigmoid(X,useStatus):
	if useStatus:
		return 1.0 / (1 + np.exp(-float(X)));
	else:
		return float(X);

这里useStatus管理是否使用sigmoid的状态,方便调试使用。

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

Python基础之函数原理与应用实例详解

本文实例讲述了Python基础之函数原理与应用。分享给大家供大家参考,具体如下: 目标 函数的快速体验 函数的基本使用 函数的参数 函数的返回值 函数的嵌套调用...

Python编程把二叉树打印成多行代码

题目描述 从上到下按层打印二叉树,同一层结点从左至右输出。每一层输出一行。 思路: 1、把每层节点的val值用list存好 2、把每层节点存好: ①计算当层节点的个数,这样就保证下一步每...

python实现名片管理器的示例代码

编写程序,完成“名片管理器”项目 需要完成的基本功能: 添加名片 删除名片 修改名片 查询名片 退出系统 程序运行后,除非选择退出系统,否则重复执行功能 mi...

浅谈Python里面小数点精度的控制

要求较小的精度 round()内置方法 这个是使用最多的,刚看了round()的使用解释,也不是很容易懂。round()不是简单的四舍五入的处理方式。 For the built-in...

使用Python画股票的K线图的方法步骤

使用Python画股票的K线图的方法步骤

导言 本文简单介绍了如何从网易财经获取某支股票的价格数据,并根据价格数据画出相应的日K线图。有助于新手了解并使用Python的相关功能。包括列表、自定义函数、for循环、if函数以及如何...