使用 tf.nn.dynamic_rnn 展开时间维度方式

yipeiwu_com6年前Python基础

对于单个的 RNNCell , 使用色的 call 函数进行运算时 ,只是在序列时间上前进了一步 。

如使用 x1、 ho 得到此h1, 通过 x2 、 h1 得到 h2 等 。

 tf.nn.dynamic_rnn的作用:

如果序列长度为n,要调用n次call函数,比较麻烦。对此,TensorFlow提供了一个tf.nn.dynamic_mn函数,使用该函数相当于调用了n次call函数。通过{ho, x1 , x2,…, xn} 直接得到{h1 , h2,…, hn} 。

具体来说,设输入数据的格式为(batch_size, time_steps, input size),

其中batch_size表示batch的大小,即包含几个序列。

time_steps表示序列长度,

input_size表示输入数据单个序列单个时间维度上固有的长度。

此时,得到的outputs是time_steps步里所有的输出。它的形状为(batch_size, time_steps, cell.output size)。state 是最后一步的隐状态,形状为(batch_size, cell . state_size) 。

至此,在对每一步的输出进行变换,可以得到损失并进行训练模型了。

以上这篇使用 tf.nn.dynamic_rnn 展开时间维度方式就是小编分享给大家的全部内容了,希望能给大家一个参考。

相关文章

python统计文本文件内单词数量的方法

本文实例讲述了python统计文本文件内单词数量的方法。分享给大家供大家参考。具体实现方法如下: # count lines, sentences, and words of a t...

Python嵌套式数据结构实例浅析

本文实例讲述了Python嵌套式数据结构。分享给大家供大家参考,具体如下: 嵌套式数据结构指的是:字典存储在列表中, 或者列表作为值存储在字典中。甚至还可以在字典中嵌套字典。 1 字典列...

pandas中DataFrame修改index、columns名的方法示例

一般常用的有两个方法: 1、使用DataFrame.index = [newName],DataFrame.columns = [newName],这两种方法可以轻松实现。 2、使用...

Python实现Sqlite将字段当做索引进行查询的方法

本文实例讲述了Python实现Sqlite将字段当做索引进行查询的方法。分享给大家供大家参考,具体如下: 默认从sqlite中获取到的数据是数字索引的, 在开发阶段经常有修改数据库所以显...

python os.fork() 循环输出方法

先看下面这段代码: import os def main(): for i in range(0, 2): os.fork() print 'Hello'...