使用 tf.nn.dynamic_rnn 展开时间维度方式

yipeiwu_com6年前Python基础

对于单个的 RNNCell , 使用色的 call 函数进行运算时 ,只是在序列时间上前进了一步 。

如使用 x1、 ho 得到此h1, 通过 x2 、 h1 得到 h2 等 。

 tf.nn.dynamic_rnn的作用:

如果序列长度为n,要调用n次call函数,比较麻烦。对此,TensorFlow提供了一个tf.nn.dynamic_mn函数,使用该函数相当于调用了n次call函数。通过{ho, x1 , x2,…, xn} 直接得到{h1 , h2,…, hn} 。

具体来说,设输入数据的格式为(batch_size, time_steps, input size),

其中batch_size表示batch的大小,即包含几个序列。

time_steps表示序列长度,

input_size表示输入数据单个序列单个时间维度上固有的长度。

此时,得到的outputs是time_steps步里所有的输出。它的形状为(batch_size, time_steps, cell.output size)。state 是最后一步的隐状态,形状为(batch_size, cell . state_size) 。

至此,在对每一步的输出进行变换,可以得到损失并进行训练模型了。

以上这篇使用 tf.nn.dynamic_rnn 展开时间维度方式就是小编分享给大家的全部内容了,希望能给大家一个参考。

相关文章

python opencv摄像头的简单应用

python opencv摄像头的简单应用

本文实例为大家分享了python opencv摄像头应用的具体代码,供大家参考,具体内容如下 1、安装 下载安装包 pip install opencv_python-2.4.12-...

python 查找文件夹下所有文件 实现代码

复制代码 代码如下:def find_file_by_pattern(pattern='.*', base=".", circle=True): '''''查找给定文件夹下面所有 '''...

用Python写脚本,实现完全备份和增量备份的示例

需求: 在/root/backup下面有两个文件夹dst和src。要求在周一的时候进行完全备份,其余日子进行增量备份。从src备份到dst。 思路及关键点: 建立一个文件,以字典方式记...

解决Djang2.0.1中的reverse导入失败的问题

在Django中,版本是1.10.*以前的,导入reverse方法是这样的: from django.core.urlresolvers import reverse 前几天我刚刚...

python 获取文件下所有文件或目录os.walk()的实例

在python3.6版本中去掉了os.path.walk()函数 os.walk() 函数声明:walk(top,topdown=True,oneerror=None) 1、参数top表...