使用 tf.nn.dynamic_rnn 展开时间维度方式

yipeiwu_com6年前Python基础

对于单个的 RNNCell , 使用色的 call 函数进行运算时 ,只是在序列时间上前进了一步 。

如使用 x1、 ho 得到此h1, 通过 x2 、 h1 得到 h2 等 。

 tf.nn.dynamic_rnn的作用:

如果序列长度为n,要调用n次call函数,比较麻烦。对此,TensorFlow提供了一个tf.nn.dynamic_mn函数,使用该函数相当于调用了n次call函数。通过{ho, x1 , x2,…, xn} 直接得到{h1 , h2,…, hn} 。

具体来说,设输入数据的格式为(batch_size, time_steps, input size),

其中batch_size表示batch的大小,即包含几个序列。

time_steps表示序列长度,

input_size表示输入数据单个序列单个时间维度上固有的长度。

此时,得到的outputs是time_steps步里所有的输出。它的形状为(batch_size, time_steps, cell.output size)。state 是最后一步的隐状态,形状为(batch_size, cell . state_size) 。

至此,在对每一步的输出进行变换,可以得到损失并进行训练模型了。

以上这篇使用 tf.nn.dynamic_rnn 展开时间维度方式就是小编分享给大家的全部内容了,希望能给大家一个参考。

相关文章

python logging添加filter教程

例子一 def filter(self, record): """Our custom record filtering logic. Built-in filter...

浅谈pandas中shift和diff函数关系

通过?pandas.DataFrame.shift命令查看帮助文档 Signature: pandas.DataFrame.shift(self, periods=1, fr...

Python计算三角函数之asin()方法的使用

 asin()方法返回x的反正弦,以弧度表示。 语法 以下是asin()方法语法: asin(x) 注意:此函数是无法直接访问的,所以我们需要导入math模块,然后需...

python 生成图形验证码的方法示例

python 生成图形验证码的方法示例

日常在网站使用过程中经常遇到图形验证,今天准备自己做个图形验证码,这算是个简单的功能,也适合新手练习的,便于自己学习。 主要用到的库--PIL图像处理库,简单的思路,我们需要随机的颜...

Python3中bytes类型转换为str类型

Python3中bytes类型转换为str类型

Python 3最重要的新特性之一是对字符串和二进制数据流做了明确的区分。文本总是Unicode,由str类型表示,二进制数据则由bytes类型表示。Python 3不会以任意隐式的方式...