使用 tf.nn.dynamic_rnn 展开时间维度方式

yipeiwu_com6年前Python基础

对于单个的 RNNCell , 使用色的 call 函数进行运算时 ,只是在序列时间上前进了一步 。

如使用 x1、 ho 得到此h1, 通过 x2 、 h1 得到 h2 等 。

 tf.nn.dynamic_rnn的作用:

如果序列长度为n,要调用n次call函数,比较麻烦。对此,TensorFlow提供了一个tf.nn.dynamic_mn函数,使用该函数相当于调用了n次call函数。通过{ho, x1 , x2,…, xn} 直接得到{h1 , h2,…, hn} 。

具体来说,设输入数据的格式为(batch_size, time_steps, input size),

其中batch_size表示batch的大小,即包含几个序列。

time_steps表示序列长度,

input_size表示输入数据单个序列单个时间维度上固有的长度。

此时,得到的outputs是time_steps步里所有的输出。它的形状为(batch_size, time_steps, cell.output size)。state 是最后一步的隐状态,形状为(batch_size, cell . state_size) 。

至此,在对每一步的输出进行变换,可以得到损失并进行训练模型了。

以上这篇使用 tf.nn.dynamic_rnn 展开时间维度方式就是小编分享给大家的全部内容了,希望能给大家一个参考。

相关文章

解决Django Static内容不能加载显示的问题

Django 1.x static 不能加载问题可以参照作以下修改: STATIC_ROOT = os.path.join(BASE_DIR, 'static').replace('...

简单谈谈Python流程控制语句

人们常说人生就是一个不断做选择题的过程:有的人没得选,只有一条路能走;有的人好一点,可以二选一;有些能力好或者家境好的人,可以有更多的选择;还有一些人在人生的迷茫期会在原地打转,找不到方...

python单线程下实现多个socket并发过程详解

先看服务端的代码 import sys # import socket import time import gevent from gevent import socket fro...

python中requests和https使用简单示例

requests 是一个非常小巧全面的库,应用它可以很容易写出与服务器进行交互的程序,今天遇到了一个问题,与服务器交互时,url都是https开头的,都进行了ssl加密处理,这样一来,就...

pip 错误unused-command-line-argument-hard-error-in-future解决办法

在我的Mac Air上,用pip安装一些Python库时,偶尔就会遇到一些报错,关于“unused-command-line-argument-hard-error-in-future”...