使用 tf.nn.dynamic_rnn 展开时间维度方式

yipeiwu_com5年前Python基础

对于单个的 RNNCell , 使用色的 call 函数进行运算时 ,只是在序列时间上前进了一步 。

如使用 x1、 ho 得到此h1, 通过 x2 、 h1 得到 h2 等 。

 tf.nn.dynamic_rnn的作用:

如果序列长度为n,要调用n次call函数,比较麻烦。对此,TensorFlow提供了一个tf.nn.dynamic_mn函数,使用该函数相当于调用了n次call函数。通过{ho, x1 , x2,…, xn} 直接得到{h1 , h2,…, hn} 。

具体来说,设输入数据的格式为(batch_size, time_steps, input size),

其中batch_size表示batch的大小,即包含几个序列。

time_steps表示序列长度,

input_size表示输入数据单个序列单个时间维度上固有的长度。

此时,得到的outputs是time_steps步里所有的输出。它的形状为(batch_size, time_steps, cell.output size)。state 是最后一步的隐状态,形状为(batch_size, cell . state_size) 。

至此,在对每一步的输出进行变换,可以得到损失并进行训练模型了。

以上这篇使用 tf.nn.dynamic_rnn 展开时间维度方式就是小编分享给大家的全部内容了,希望能给大家一个参考。

相关文章

Django网络框架之HelloDjango项目创建教程

Django网络框架之HelloDjango项目创建教程

本文实例讲述了Django网络框架之HelloDjango项目。分享给大家供大家参考,具体如下: 这里将带你从零开始创建一个Django项目,包含完整的MTV架构、创建子应用,及访问静态...

分享8点超级有用的Python编程建议(推荐)

分享8点超级有用的Python编程建议(推荐)

我们在用Python进行机器学习建模项目的时候,每个人都会有自己的一套项目文件管理的习惯,我自己也有一套方法,是自己曾经踩过的坑总结出来的,现在在这里分享一下给大家,希望多少有些地方可以...

python中的五种异常处理机制介绍

从几年前开始学习编程直到现在,一直对程序中的异常处理怀有恐惧和排斥心理。之所以这样,是因为不了解。这次攻python,首先把自己最畏惧和最不熟悉的几块内容列出来,里面就有「异常处理」这一...

python3+selenium自动化测试框架详解

python3+selenium自动化测试框架详解

背景 为了更好的发展自身的测试技能,应对测试行业以及互联网行业的迭代变化。自学python以及自动化测试。 虽然在2017年已经开始接触了selenium,期间是断断续续执行自动化测...

python机器学习理论与实战(五)支持向量机

python机器学习理论与实战(五)支持向量机

       做机器学习的一定对支持向量机(support vector machine-SVM)颇为熟悉,因为在深...