使用 tf.nn.dynamic_rnn 展开时间维度方式

yipeiwu_com6年前Python基础

对于单个的 RNNCell , 使用色的 call 函数进行运算时 ,只是在序列时间上前进了一步 。

如使用 x1、 ho 得到此h1, 通过 x2 、 h1 得到 h2 等 。

 tf.nn.dynamic_rnn的作用:

如果序列长度为n,要调用n次call函数,比较麻烦。对此,TensorFlow提供了一个tf.nn.dynamic_mn函数,使用该函数相当于调用了n次call函数。通过{ho, x1 , x2,…, xn} 直接得到{h1 , h2,…, hn} 。

具体来说,设输入数据的格式为(batch_size, time_steps, input size),

其中batch_size表示batch的大小,即包含几个序列。

time_steps表示序列长度,

input_size表示输入数据单个序列单个时间维度上固有的长度。

此时,得到的outputs是time_steps步里所有的输出。它的形状为(batch_size, time_steps, cell.output size)。state 是最后一步的隐状态,形状为(batch_size, cell . state_size) 。

至此,在对每一步的输出进行变换,可以得到损失并进行训练模型了。

以上这篇使用 tf.nn.dynamic_rnn 展开时间维度方式就是小编分享给大家的全部内容了,希望能给大家一个参考。

相关文章

使用APScheduler3.0.1 实现定时任务的方法

需求是在某一指定的时刻执行操作 网上的建议多为通过调用Scheduler的add_date_job实现 不过APScheduler 3.0.1与之前差异较大, 无法通过上述方法实现 参考...

Python编程在flask中模拟进行Restful的CRUD操作

Python编程在flask中模拟进行Restful的CRUD操作

这篇文章中我们将通过对HelloWorld的message进行操作,介绍一下如何使用flask进行Restful的CRUD。 概要信息 事前准备:flask liumiaocn:f...

tensorflow更改变量的值实例

如下所示: from __future__ import print_function,division import tensorflow as tf #create a Var...

Python for i in range ()用法详解

for i in range ()作用: range()是一个函数, for i in range () 就是给i赋值: 比如 for i in range (1,3): 就是把1,2依...

python实现指定字符串补全空格的方法

本文实例讲述了python实现指定字符串补全空格的方法。分享给大家供大家参考。具体分析如下: 如果希望字符串的长度固定,给定的字符串又不够长度,我们可以通过rjust,ljust和cen...