使用 tf.nn.dynamic_rnn 展开时间维度方式

yipeiwu_com6年前Python基础

对于单个的 RNNCell , 使用色的 call 函数进行运算时 ,只是在序列时间上前进了一步 。

如使用 x1、 ho 得到此h1, 通过 x2 、 h1 得到 h2 等 。

 tf.nn.dynamic_rnn的作用:

如果序列长度为n,要调用n次call函数,比较麻烦。对此,TensorFlow提供了一个tf.nn.dynamic_mn函数,使用该函数相当于调用了n次call函数。通过{ho, x1 , x2,…, xn} 直接得到{h1 , h2,…, hn} 。

具体来说,设输入数据的格式为(batch_size, time_steps, input size),

其中batch_size表示batch的大小,即包含几个序列。

time_steps表示序列长度,

input_size表示输入数据单个序列单个时间维度上固有的长度。

此时,得到的outputs是time_steps步里所有的输出。它的形状为(batch_size, time_steps, cell.output size)。state 是最后一步的隐状态,形状为(batch_size, cell . state_size) 。

至此,在对每一步的输出进行变换,可以得到损失并进行训练模型了。

以上这篇使用 tf.nn.dynamic_rnn 展开时间维度方式就是小编分享给大家的全部内容了,希望能给大家一个参考。

相关文章

Python实现识别手写数字 Python图片读入与处理

Python实现识别手写数字 Python图片读入与处理

写在前面 在上一篇文章Python徒手实现手写数字识别—大纲中,我们已经讲过了我们想要写的全部思路,所以我们不再说全部的思路。 我这一次将图片的读入与处理的代码写了一下,和大纲写的过程一...

Python网站验证码识别

Python网站验证码识别

0x00 识别涉及技术 验证码识别涉及很多方面的内容。入手难度大,但是入手后,可拓展性又非常广泛,可玩性极强,成就感也很足。 验证码图像处理 验证码图像识别技术主要是操作图片内的像素点,...

Python的Django框架中if标签的相关使用

{% if %} 标签检查(evaluate)一个变量,如果这个变量为真(即,变量存在,非空,不是布尔值假),系统会显示在 {% if %} 和 {% endif %} 之间的任何内容,...

python的turtle库使用详解

python的turtle库使用详解

python中的turtle库是3.6版本中新推出的绘图工具库,那么如何使用呢?下面小编给大家分享一下。 首先打开pycharm软件,右键单击选择新建一个python file 接下来...

Python从使用线程到使用async/await的深入讲解

前言 为了简化并更好地标识异步IO,从Python 3.5开始引入了新的语法async和await,可以让coroutine的代码更简洁易读。 请注意,async和await是针对cor...