使用 tf.nn.dynamic_rnn 展开时间维度方式

yipeiwu_com6年前Python基础

对于单个的 RNNCell , 使用色的 call 函数进行运算时 ,只是在序列时间上前进了一步 。

如使用 x1、 ho 得到此h1, 通过 x2 、 h1 得到 h2 等 。

 tf.nn.dynamic_rnn的作用:

如果序列长度为n,要调用n次call函数,比较麻烦。对此,TensorFlow提供了一个tf.nn.dynamic_mn函数,使用该函数相当于调用了n次call函数。通过{ho, x1 , x2,…, xn} 直接得到{h1 , h2,…, hn} 。

具体来说,设输入数据的格式为(batch_size, time_steps, input size),

其中batch_size表示batch的大小,即包含几个序列。

time_steps表示序列长度,

input_size表示输入数据单个序列单个时间维度上固有的长度。

此时,得到的outputs是time_steps步里所有的输出。它的形状为(batch_size, time_steps, cell.output size)。state 是最后一步的隐状态,形状为(batch_size, cell . state_size) 。

至此,在对每一步的输出进行变换,可以得到损失并进行训练模型了。

以上这篇使用 tf.nn.dynamic_rnn 展开时间维度方式就是小编分享给大家的全部内容了,希望能给大家一个参考。

相关文章

python实现ip查询示例

以下代码实现了ip查询功能处理程序 复制代码 代码如下:import os,time def getip(filepath):    ip2city={}&...

python交互界面的退出方法

1.在终端输入python,进入之后退出: quit() 或者 exit() 2,进入idle shell下的退出 关闭: quit() 或者 exit() 或...

python opencv读mp4视频的实例

如下所示: #获得视频的格式 videoCapture = cv2.VideoCapture('/home/lw/3661.mp4') #获得码率及尺寸 fps = videoC...

Python代码缩进和测试模块示例详解

前言 Python代码缩进和测试模块是大家学习python必不可少的一部分,本文主要介绍了关于Python代码缩进和测试模块的相关内容,分享出来供大家参考学习,下面话不多说了,来一起看看...

Python决策树分类算法学习

Python决策树分类算法学习

从这一章开始进入正式的算法学习。 首先我们学习经典而有效的分类算法:决策树分类算法。 1、决策树算法 决策树用树形结构对样本的属性进行分类,是最直观的分类算法,而且也可以用于回归。不...