python实现k均值算法示例(k均值聚类算法)

yipeiwu_com6年前Python基础

简单实现平面的点K均值分析,使用欧几里得距离,并用pylab展示。

复制代码 代码如下:

import pylab as pl

#calc Euclid squire
def calc_e_squire(a, b):
    return (a[0]- b[0]) ** 2 + (a[1] - b[1]) **2

#init the 20 point
a = [2,4,3,6,7,8,2,3,5,6,12,10,15,16,11,10,19,17,16,13]
b = [5,6,1,4,2,4,3,1,7,9,16,11,19,12,15,14,11,14,11,19]

#define two k_value
k1 = [6,3]
k2 = [6,1]

#defint tow cluster
sse_k1 = []
sse_k2 = []
while True:
    sse_k1 = []
    sse_k2 = []
    for i in range(20):
        e_squire1 = calc_e_squire(k1, [a[i], b[i]])
        e_squire2 = calc_e_squire(k2, [a[i], b[i]])
        if (e_squire1 <= e_squire2):
            sse_k1.append(i)
        else:
            sse_k2.append(i)

    #change k_value
    k1_x = sum([a[i] for i in sse_k1]) / len(sse_k1)
    k1_y = sum([b[i] for i in sse_k1]) / len(sse_k1)

    k2_x = sum([a[i] for i in sse_k2]) / len(sse_k2)
    k2_y = sum([b[i] for i in sse_k2]) / len(sse_k2)

    if k1 != [k1_x, k1_y] or k2 != [k2_x, k2_y]:
        k1 = [k1_x, k1_y]
        k2 = [k2_x, k2_y]
    else:
        break

kv1_x = [a[i] for i in sse_k1]
kv1_y = [b[i] for i in sse_k1]

kv2_x = [a[i] for i in sse_k2]
kv2_y = [b[i] for i in sse_k2]

pl.plot(kv1_x, kv1_y, 'o')
pl.plot(kv2_x, kv2_y, 'or')

pl.xlim(1, 20)
pl.ylim(1, 20)
pl.show()

相关文章

Python基于回溯法子集树模板解决0-1背包问题实例

Python基于回溯法子集树模板解决0-1背包问题实例

本文实例讲述了Python基于回溯法子集树模板解决0-1背包问题。分享给大家供大家参考,具体如下: 问题 给定N个物品和一个背包。物品i的重量是Wi,其价值位Vi ,背包的容量为C。问应...

对python中大文件的导入与导出方法详解

1、csv文件的导入和导出 通过一个矩阵导出为csv文件,将csv文件导入为矩阵 将csv文件导入到一个矩阵中 import numpy my_matrix = numpy.lo...

Python用zip函数同时遍历多个迭代器示例详解

前言 本文主要介绍的是Python如何使用zip函数同时遍历多个迭代器,文中的版本为Python3,zip函数是Python内置的函数。下面话不多说,来看详细的内容。 应用举例...

跟老齐学Python之复习if语句

基本语句结构 复制代码 代码如下: if 判断条件1:     执行语句1…… elif 判断条件2:     执行语句2……...

python文本数据相似度的度量

编辑距离 编辑距离,又称为Levenshtein距离,是用于计算一个字符串转换为另一个字符串时,插入、删除和替换的次数。例如,将'dad'转换为'bad'需要一次替换操作,编辑距离为1。...