爬山算法简介和Python实现实例

yipeiwu_com5年前Python基础

一、爬山法简介

爬山法(climbing method)是一种优化算法,其一般从一个随机的解开始,然后逐步找到一个最优解(局部最优)。 假定所求问题有多个参数,我们在通过爬山法逐步获得最优解的过程中可以依次分别将某个参数的值增加或者减少一个单位。例如某个问题的解需要使用3个整数类型的参数x1、x2、x3,开始时将这三个参数设值为(2,2,-2),将x1增加/减少1,得到两个解(1,2,-2), (3, 2,-2);将x2增加/减少1,得到两个解(2,3, -2),(2,1, -2);将x3增加/减少1,得到两个解(2,2,-1),(2,2,-3),这样就得到了一个解集:
(2,2,-2), (1, 2,-2), (3, 2,-2), (2,3,-2), (2,1,-2), (2,2,-1), (2,2,-3)
从上面的解集中找到最优解,然后将这个最优解依据上面的方法再构造一个解集,再求最优解,就这样,直到前一次的最优解和后一次的最优解相同才结束“爬山”。

二、Python实例

设方程 y = x1+x2-x3,x1是区间[-2, 5]中的整数,x2是区间[2, 6]中的整数,x3是区间[-5, 2]中的整数。使用爬山法,找到使得y取值最小的解。

代码如下:

复制代码 代码如下:

import random

def evaluate(x1, x2, x3):
    return x1+x2-x3

if __name__ == '__main__':
    x_range = [ [-2, 5], [2, 6], [-5, 2] ]
    best_sol = [random.randint(x_range[0][0], x_range[0][1]),
           random.randint(x_range[1][0], x_range[1][1]),
           random.randint(x_range[2][0], x_range[2][1])]

    while True:
        best_evaluate = evaluate(best_sol[0], best_sol[1], best_sol[2])
        current_best_value = best_evaluate
        sols = [best_sol]

        for i in xrange(len(best_sol)):
            if best_sol[i] > x_range[i][0]:
                sols.append(best_sol[0:i] + [best_sol[i]-1] + best_sol[i+1:])
            if best_sol[i] < x_range[i][1]:
                sols.append(best_sol[0:i] + [best_sol[i]+1] + best_sol[i+1:])
        print sols
        for s in sols:
            el = evaluate(s[0], s[1], s[2])
            if el < best_evaluate:
                best_sol = s
                best_evaluate = el
        if best_evaluate == current_best_value:
            break

    print 'best sol:', current_best_value, best_sol
某次运行结果如下:

[[0, 5, 1], [-1, 5, 1], [1, 5, 1], [0, 4, 1], [0, 6, 1], [0, 5, 0], [0, 5, 2]]
[[-1, 5, 1], [-2, 5, 1], [0, 5, 1], [-1, 4, 1], [-1, 6, 1], [-1, 5, 0], [-1, 5, 2]]
[[-2, 5, 1], [-1, 5, 1], [-2, 4, 1], [-2, 6, 1], [-2, 5, 0], [-2, 5, 2]]
[[-2, 4, 1], [-1, 4, 1], [-2, 3, 1], [-2, 5, 1], [-2, 4, 0], [-2, 4, 2]]
[[-2, 3, 1], [-1, 3, 1], [-2, 2, 1], [-2, 4, 1], [-2, 3, 0], [-2, 3, 2]]
[[-2, 2, 1], [-1, 2, 1], [-2, 3, 1], [-2, 2, 0], [-2, 2, 2]]
[[-2, 2, 2], [-1, 2, 2], [-2, 3, 2], [-2, 2, 1]]
best sol: -2 [-2, 2, 2]


可以看到,最优解是-2,对应的x1、x2、x3分别取值-2、2、2。

三、如何找到全局最优

爬山法获取的最优解的可能是局部最优,如果要获得更好的解,多次使用爬山算法(需要从不同的初始解开始爬山),从多个局部最优解中找出最优解,而这个最优解也有可能是全局最优解。

另外,模拟退火算法也是一个试图找到全局最优解的算法。

 

相关文章

解决win64 Python下安装PIL出错问题(图解)

解决win64 Python下安装PIL出错问题(图解)

1、软件版本 首先我先安装了 python 2.7 pip是  8.1.2 2、当我要安装PIL时,我在cmd下面输入:pip install PIL 错误提示是: Coul...

python实现停车管理系统

Python停车管理系统可实现车辆入库,按车牌号或者车型查询车辆,修改车辆信息,车辆出库时实现计费,按车型统计车辆数和显示全部车辆信息的功能 (1)定义车辆类,属性有车牌号、颜色、车型(...

python实现复制整个目录的方法

本文实例讲述了python实现复制整个目录的方法。分享给大家供大家参考。具体分析如下: python有一个非常好用的目录操作类库shutil,通过这个库可以很简单的复制整个目录及目录下的...

Python贪吃蛇游戏编写代码

Python贪吃蛇游戏编写代码

最近在学Python,想做点什么来练练手,命令行的贪吃蛇一般是C的练手项目,但是一时之间找不到别的,就先做个贪吃蛇来练练简单的语法。 由于Python监听键盘很麻烦,没有C语言的kbhi...

python函数的作用域及关键字详解

函数的作用域 python中的作用域分4种情况: L:local,局部作用域,即函数中定义的变量; E:enclosing,嵌套的父级函数的局部作用域,即包含此函数的上级函数...