Python中的map、reduce和filter浅析

yipeiwu_com6年前Python基础

1、先看看什么是 iterable 对象

以内置的max函数为例子,查看其doc:

复制代码 代码如下:

>>> print max.__doc__
max(iterable[, key=func]) -> value
max(a, b, c, ...[, key=func]) -> value

With a single iterable argument, return its largest item.
With two or more arguments, return the largest argument.


在max函数的第一种形式中,其第一个参数是一个 iterable 对象,既然这样,那么哪些是 iterable 对象呢?
复制代码 代码如下:

>>> max('abcx')
>>> 'x'
>>> max('1234')
>>> '4'
>>> max((1,2,3))
>>> 3
>>> max([1,2,4])
>>> 4

我们可以使用yield生成一个iterable 对象(也有其他的方式):
复制代码 代码如下:

def my_range(start,end):
    ''' '''
    while start <= end:
        yield start
        start += 1

执行下面的代码:
复制代码 代码如下:

for num in my_range(1, 4):
    print num
print max(my_range(1, 4))

将输出:
复制代码 代码如下:

1
2
3
4
4


2、map

在http://docs.python.org/2/library/functions.html#map中如此介绍map函数:

复制代码 代码如下:

map(function, iterable, ...)
Apply function to every item of iterable and return a list of the results. If additional iterable arguments are passed, function must take that many arguments and is applied to the items from all iterables in parallel. If one iterable is shorter than another it is assumed to be extended with None items. If function is None, the identity function is assumed; if there are multiple arguments, map() returns a list consisting of tuples containing the corresponding items from all iterables (a kind of transpose operation). The iterable arguments may be a sequence or any iterable object; the result is always a list.

map函数使用自定义的function处理iterable中的每一个元素,将所有的处理结果以list的形式返回。例如:
复制代码 代码如下:

def func(x):
    ''' '''
    return x*x

print map(func, [1,2,4,8])
print map(func, my_range(1, 4))


运行结果是:
复制代码 代码如下:

[1, 4, 16, 64]
[1, 4, 9, 16]

也可以通过列表推导来实现:
复制代码 代码如下:

print [x*x for x in [1,2,4,8]]

3、reduce

在http://docs.python.org/2/library/functions.html#reduce中如下介绍reduce函数:

复制代码 代码如下:

reduce(function, iterable[, initializer])
Apply function of two arguments cumulatively to the items of iterable, from left to right, so as to reduce the iterable to a single value. For example, reduce(lambda x, y: x+y, [1, 2, 3, 4, 5]) calculates ((((1+2)+3)+4)+5). The left argument, x, is the accumulated value and the right argument, y, is the update value from the iterable. If the optional initializer is present, it is placed before the items of the iterable in the calculation, and serves as a default when the iterable is empty. If initializer is not given and iterable contains only one item, the first item is returned.

这个已经介绍的很明了,
复制代码 代码如下:
reduce(lambda x, y: x+y, [1, 2, 3, 4, 5])

相当于计算
复制代码 代码如下:

((((1+2)+3)+4)+5)

而:
复制代码 代码如下:

reduce(lambda x, y: x+y, [1, 2, 3, 4, 5],6)

相当于计算
复制代码 代码如下:

(((((6+1)+2)+3)+4)+5)


4、filter

在http://docs.python.org/2/library/functions.html#filter中如下介绍filter函数:

复制代码 代码如下:

filter(function, iterable)
Construct a list from those elements of iterable for which function returns true. iterable may be either a sequence, a container which supports iteration, or an iterator. If iterable is a string or a tuple, the result also has that type; otherwise it is always a list. If function is None, the identity function is assumed, that is, all elements of iterable that are false are removed.

Note that filter(function, iterable) is equivalent to [item for item in iterable if function(item)] if function is not None and [item for item in iterable if item] if function is None.


参数function(是函数)用于处理iterable中的每个元素,如果function处理某元素时候返回true,那么该元素将作为list的成员而返回。比如,过滤掉字符串中的字符a:
复制代码 代码如下:

def func(x):
    ''' '''
    return x != 'a'

print filter(func, 'awake')


运行结果是:
复制代码 代码如下:

wke

这也可以通过列表推导来实现:
复制代码 代码如下:

print ''.join([x for x in 'awake' if x != 'a'])

相关文章

Python实现的简单计算器功能详解

Python实现的简单计算器功能详解

本文实例讲述了Python实现的简单计算器功能。分享给大家供大家参考,具体如下: 使用python编写一款简易的计算器 计算器效果图 首先搭建计算器的面板: 计算器面板结构 建造一个...

Python中的yield浅析

在介绍yield前有必要先说明下Python中的迭代器(iterator)和生成器(constructor)。 一、迭代器(iterator) 在Python中,for循环可以用于Pyt...

python 匹配url中是否存在IP地址的方法

因为需要检测一个一个链接中是否包含了IP地址,在这里需要使用到正则表达式 ,python完美的支持了正则表达式,在这里使用re模块来完成,对正则表达式并不是很熟练,每次都是需要用的时候现...

TFRecord格式存储数据与队列读取实例

TFRecord格式存储数据与队列读取实例

Tensor Flow官方网站上提供三种读取数据的方法 1. 预加载数据:在Tensor Flow图中定义常量或变量来保存所有数据,将数据直接嵌到数据图中,当训练数据较大时,很消耗内存...

python微信好友数据分析详解

python微信好友数据分析详解

基于微信开放的个人号接口python库itchat,实现对微信好友的获取,并对省份、性别、微信签名做数据分析。 效果: 直接上代码,建三个空文本文件stopwords.txt,ne...