Python中zip()函数用法实例教程

yipeiwu_com6年前Python基础

本文实例讲述了Python中zip()函数的定义及用法,相信对于Python初学者有一定的借鉴价值。详情如下:

一、定义:

zip([iterable, ...])
zip()是Python的一个内建函数,它接受一系列可迭代的对象作为参数,将对象中对应的元素打包成一个个tuple(元组),然后返回由这些tuples组成的list(列表)。若传入参数的长度不等,则返回list的长度和参数中长度最短的对象相同。利用*号操作符,可以将list unzip(解压)。

二、用法示例:

读者看看下面的例子,对zip()函数的基本用法就可以明白了:

>>> a = [1,2,3]
>>> b = [4,5,6]
>>> c = [4,5,6,7,8]
>>> zipped = zip(a,b)
[(1, 4), (2, 5), (3, 6)]
>>> zip(a,c)
[(1, 4), (2, 5), (3, 6)]
>>> zip(*zipped)
[(1, 2, 3), (4, 5, 6)]

对于这个并不是很常用函数,下面举几个例子说明它的用法:

1.二维矩阵变换(矩阵的行列互换)

比如我们有一个由列表描述的二维矩阵

a = [[1, 2, 3], [4, 5, 6], [7, 8, 9]]

通过python列表推导的方法,我们也能轻易完成这个任务

print [ [row[col] for row in a] for col in range(len(a[0]))]
[[1, 4, 7], [2, 5, 8], [3, 6, 9]]

另外一种让人困惑的方法就是利用zip函数:

>>> a = [[1, 2, 3], [4, 5, 6], [7, 8, 9]]
>>> zip(*a)
[(1, 4, 7), (2, 5, 8), (3, 6, 9)]
>>> map(list,zip(*a))
[[1, 4, 7], [2, 5, 8], [3, 6, 9]]

这种方法速度更快但也更难以理解,将list看成tuple解压,恰好得到我们“行列互换”的效果,再通过对每个元素应用list()函数,将tuple转换为list

2.以指定概率获取元素

>>> import random
>>> def random_pick(seq,probabilities):
 x = random.uniform(0, 1)
 cumulative_probability = 0.0
 for item, item_probability in zip(seq, probabilities):
 cumulative_probability += item_probability
 if x < cumulative_probability: break
 return item

>>> for i in range(15):
 random_pick("abc",[0.1,0.3,0.6])
 
'c'
'b'
'c'
'c'
'a'
'b'
'c'
'c'
'c'
'a'
'b'
'b'
'c'
'a'
'c'

这个函数有个限制,指定概率的列表必须和元素一一对应,而且和为1,否则这个函数可能不能像预想的那样工作。

这里需要稍微解释下,先利用random.uniform()函数生成一个0-1之间的随机数并复制给x,利用zip()函数将元素和他对应的概率打包成tuple,然后将每个元素的概率进行叠加,直到和大于x终止循环
这样,”a”被选中的概率就是x取值位于0-0.1的概率,同理”b”为0.1-0.4,”c”为0.4-1.0,假设x是在0-1之间平均取值的,显然我们的目的已经达到。

相关文章

python安装numpy和pandas的方法步骤

最近要对一系列数据做同比比较,需要用到numpy和pandas来计算,不过使用python安装numpy和pandas因为linux环境没有外网遇到了很多问题就记下来了。首要条件,pyt...

对python while循环和双重循环的实例详解

废话不多说,直接上代码吧! #python中,while语句用于循环执行程序,即在某个条件下,循环执行某段程序,以处理需要重复处理的相同任务。 #while是“当型”循环结构。 i=...

利用Python检测URL状态

需求:Python检测URL状态,并追加保存200的URL 代码一: #! /usr/bin/env python #coding=utf-8 import sys import...

在Python3 numpy中mean和average的区别详解

mean和average都是计算均值的函数,在不指定权重的时候average和mean是一样的。指定权重后,average可以计算一维的加权平均值。 具体如下: import num...

numpy中三维数组中加入元素后的位置详解

numpy中三维数组中加入元素后的位置详解

今天做数据处理时,遇到了从三维数组中批量加入二维数组的需求。其中三维数组在深度学习的特征数据处理时经常会使用到,所以读者有必要对该小知识点做到清楚了解并掌握。现对三维数组中的元素位置结合...