简单介绍Python的Tornado框架中的协程异步实现原理

yipeiwu_com6年前Python基础

Tornado 4.0 已经发布了很长一段时间了, 新版本广泛的应用了协程(Future)特性. 我们目前已经将 Tornado 升级到最新版本, 而且也大量的使用协程特性.

很长时间没有更新博客, 今天就简单介绍下 Tornado 协程实现原理, Tornado 的协程是基于 Python 的生成器实现的, 所以首先来回顾下生成器.
生成器

Python 的生成器可以保存执行状态 并在下次调用的时候恢复, 通过在函数体内使用 yield 关键字 来创建一个生成器, 通过内置函数 next 或生成器的 next 方法来恢复生成器的状态.

def test():
  yield 1

我们调用 test 函数, 此时并不会返回结果, 而是会返回一个生成器

>>> test()
<generator object test at 0x100b3b320>

我们调用其 next 方法则返回 yield 关键字之后的内容.

>>> t = test()
>>> t.next()
1

如果我们接着调用 next 方法, 后面又没有 yield 关键字继续返回的话, 会抛出一个 StopIteration 异常.

yield 关键字不仅仅能从生成器内部返回状态, 同时也可以将外部信息传递到生成器内部, 通过将 yeild 关键里赋值给变量, 并调用生成器的 send 方法来将对象传递到生成器 内部. 需要注意的是生成器的开始必须调用其 next 方法, 后面 send 方法调用的同时 也会触发 next 动作. 如果没有变量接收 yield 关键字那么 send 传递的值将会 被丢弃.

>>> def test():
  a = yield
  print(a)

首先调用 next 上面函数返回的生成器将返回 None, 如果这时候直接调用 next 将 会给生成器发送 None, 如果调用 send 发送一个值, 将打印这个值并抛出 StopIteration 异常.
一个简单地协程

以上就是实现协程的所有基础, 为了加深理解, 我们这里写一个小例子, 例子我们只使用协程 开启两个甚至多个死循环, 下面就是一个极其简单地例子::

#!/usr/bin/env python
# -*- coding:utf-8 -*-

from __future__ import absolute_import, print_function, division, with_statement

def loop1():
  """ 循环1负责抛出一个函数和对应的参数, 并接收结果
  """
  a = 0
  ret = 1
  while True:
    ret = yield sum, [a, ret]
    a, ret = ret, a
    print("Loop1 ret", ret)

def loop2():
  """ 循环2 负责接收函数并计算结果, 然后 yield 出结果
  """
  while True:
    func, args = yield
    yield func(args)
    print("Loop2")


l1 = loop1()
l2 = loop2()
tmp = l1.next()

for i in range(10):
  l2.next()
  ret = l2.send(tmp)
  tmp = l1.send(ret)


上面例子里 loop1 负责产生任务, loop2 负责执行任务, 主循环负责调度任务并将任务结果发回给 任务产生者.
Tornado 如何做的

我们首先看一个使用 Tornado 协程异步的例子

#!/usr/bin/env python
# -*- coding:utf-8 -*-

from __future__ import absolute_import, print_function, division, with_statement

from tornado import gen
from tornado import web
from tornado import httpclient


class ActionHandler(web.RequestHandler):

  @gen.coroutine
  def get(self):
    response = yield httpclient.AsyncHTTPClient().fetch("http://www.linuxzen.com")

    # ...

其实原理在上面简单地例子里已经讲清楚了, 我们来简单分析一遍上面的例子, 首先 Tornado 得到 ActionHandler.get 方法抛出(next)的一个任务, 然后异步的去执行任务, 当任务(网络请求)结束或 异常时 Tornado 取得事件通知然后将结果放回(send)到该方法中让该方法继续执行.

由于是异步的, 调用这个方法并不会阻塞其他任务执行.

这时候我们的方法其实就是上个例子 loop1 函数, 而 Tornado 调度并执行了其抛出的任务.
总结

Tornado 的协程异步可以让异步看起来是顺序执行的, 可以从一大串的 callback 中解脱出来.

Tornado 的协程异步并不是这三言两语能说清楚的, 其中有很复杂的封装和传递, 有兴趣可以自己 阅读源码.

相关文章

Python实现OpenCV的安装与使用示例

Python实现OpenCV的安装与使用示例

本文实例讲述了Python实现OpenCV的安装与使用。分享给大家供大家参考,具体如下: 由于下一步要开始研究下深度学习,而深度学习领域很多的算法和应用都是用Python来实现的,把Py...

Linux上使用Python统计每天的键盘输入次数

Github 项目主页 工具源码 分析结果: total : 15981 1568.0 == Backspace 1103.0 == Tab 1038.0 == Enter 900....

Python随机生成带特殊字符的密码

在日常运维中,如果涉及到用户管理,就一定会用到给用户设置密码的工作,其实吧,平时脑子里觉得设置个密码没什么,但要真让你随手敲一个12位带特殊字符的随机密码,也是很痛苦的事,如果让你敲10...

python如何生成网页验证码

本文实例为大家分享了python生成网页验证码的具体代码,供大家参考,具体内容如下 验证码为pil模块生成,可直接应用于django框架当中。 首先需要安装Pillow模块 我们这里使用...

Python 读取指定文件夹下的所有图像方法

Python 读取指定文件夹下的所有图像方法

(1)数据准备 数据集介绍: 数据集中存放的是1223幅图像,其中756个负样本(图像名称为0.1~0.756),458个正样本(图像名称为1.1~1.458),其中:"."前的标号为样...