Python多进程并发(multiprocessing)用法实例详解

yipeiwu_com6年前Python基础

本文实例讲述了Python多进程并发(multiprocessing)用法。分享给大家供大家参考。具体分析如下:

由于Python设计的限制(我说的是咱们常用的CPython)。最多只能用满1个CPU核心。
Python提供了非常好用的多进程包multiprocessing,你只需要定义一个函数,Python会替你完成其他所有事情。借助这个包,可以轻松完成从单进程到并发执行的转换。

1、新建单一进程

如果我们新建少量进程,可以如下:

import multiprocessing
import time
def func(msg):
  for i in xrange(3):
    print msg
    time.sleep(1)
if __name__ == "__main__":
  p = multiprocessing.Process(target=func, args=("hello", ))
  p.start()
  p.join()
  print "Sub-process done."

2、使用进程池

是的,你没有看错,不是线程池。它可以让你跑满多核CPU,而且使用方法非常简单。

注意要用apply_async,如果落下async,就变成阻塞版本了。

processes=4是最多并发进程数量。

import multiprocessing
import time
def func(msg):
  for i in xrange(3):
    print msg
    time.sleep(1)
if __name__ == "__main__":
  pool = multiprocessing.Pool(processes=4)
  for i in xrange(10):
    msg = "hello %d" %(i)
    pool.apply_async(func, (msg, ))
  pool.close()
  pool.join()
  print "Sub-process(es) done."

3、使用Pool,并需要关注结果

更多的时候,我们不仅需要多进程执行,还需要关注每个进程的执行结果,如下:

import multiprocessing
import time
def func(msg):
  for i in xrange(3):
    print msg
    time.sleep(1)
  return "done " + msg
if __name__ == "__main__":
  pool = multiprocessing.Pool(processes=4)
  result = []
  for i in xrange(10):
    msg = "hello %d" %(i)
    result.append(pool.apply_async(func, (msg, )))
  pool.close()
  pool.join()
  for res in result:
    print res.get()
  print "Sub-process(es) done."

希望本文所述对大家的Python程序设计有所帮助。

相关文章

使用Pandas的Series方法绘制图像教程

使用Pandas的Series方法绘制图像教程

通常绘制二维曲线的时候可以使用matplotlib,不过如果电脑上安装了pandas的话可以直接使用Series的绘图方法进行图像的绘制。 pandas绘制图像其实也是给予matplot...

Python算法中的时间复杂度问题

Python算法中的时间复杂度问题

在实现算法的时候,通常会从两方面考虑算法的复杂度,即时间复杂度和空间复杂度。顾名思义,时间复杂度用于度量算法的计算工作量,空间复杂度用于度量算法占用的内存空间。 本文将从时间复杂度的概...

python中安装模块包版本冲突问题的解决

问题 最近在工作中遇到一个问题,在安装python软件包的时候,经常会遇类似这样一个问题。比如对于ipython,机子本身安装的版本是1.2.1,显然太低,不足以跑jupyter,尝试...

浅谈python jieba分词模块的基本用法

jieba(结巴)是一个强大的分词库,完美支持中文分词,本文对其基本用法做一个简要总结。 特点 支持三种分词模式: 精确模式,试图将句子最精确地切开,适合文本分析;...

python分割和拼接字符串

关于string的split 和 join 方法对导入os模块进行os.path.splie()/os.path.join() 貌似是处理机制不一样,但是功能上一样。1.string.s...