python实现数独算法实例

yipeiwu_com5年前Python基础

本文实例讲述了python实现数独算法的方法。分享给大家供大家参考。具体如下:

# -*- coding: utf-8 -*-
'''
Created on 2012-10-5
@author: Administrator
'''
from collections import defaultdict
import itertools
a = [
  [ 0, 7, 0, 0, 0, 0, 0, 0, 0], #0
  [ 5, 0, 3, 0, 0, 6, 0, 0, 0], #1
  [ 0, 6, 2, 0, 8, 0, 7, 0, 0], #2
  #
  [ 0, 0, 0, 3, 0, 2, 0, 5, 0], #3
  [ 0, 0, 4, 0, 1, 0, 3, 0, 0], #4
  [ 0, 2, 0, 9, 0, 5, 0, 0, 0], #5
  #
  [ 0, 0, 1, 0, 3, 0, 5, 9, 0], #6
  [ 0, 0, 0, 4, 0, 0, 6, 0, 3], #7
  [ 0, 0, 0, 0, 0, 0, 0, 2, 0], #8
#  0, 1, 2, 3,|4, 5, 6,|7, 8
  ]
#a = [
#  [0, 0, 0, 0, 0, 0, 0, 0, 0], #0
#  [0, 0, 0, 0, 0, 0, 0, 0, 0], #1
#  [0, 0, 0, 0, 0, 0, 0, 0, 0], #2
#  #
#  [0, 0, 0, 0, 0, 0, 0, 0, 0], #3
#  [0, 0, 0, 0, 0, 0, 0, 0, 0], #4
#  [0, 0, 0, 0, 0, 0, 0, 0, 0], #5
#  #
#  [0, 0, 0, 0, 0, 0, 0, 0, 0], #6
#  [0, 0, 0, 0, 0, 0, 0, 0, 0], #7
#  [0, 0, 0, 0, 0, 0, 0, 0, 0], #8
##  0, 1, 2, 3,|4, 5, 6,|7, 8
#  ]
exists_d = dict((((h_idx, y_idx), v) for h_idx, y in enumerate(a) for y_idx , v in enumerate(y) if v))
h_exist = defaultdict(dict)
v_exist = defaultdict(dict)
for k, v in exists_d.items():
 h_exist[k[ 0]][k[ 1]] = v
 v_exist[k[ 1]][k[ 0]] = v
aa = list(itertools.permutations(range(1, 10), 9))
h_d = {}
for hk, hv in h_exist.items():
 x = filter(lambda x:all((x[k] == v for k, v in hv.items())), aa)
 x = filter(lambda x:all((x[vk] != v for vk , vv in v_exist.items() for k, v in vv.items() if k != hk)), x)
# print x
 h_d[hk] = x
def test(x, y):
 return all([y[i] not in [x_[i] for x_ in x] for i in range(len(y)) ])
def test2(x):
 return len(set(x)) != 9
s = set(range(9))
sudokus = []
for l0 in h_d[0 ]:
 for l1 in h_d[ 1]:
  if not test((l0,), l1):
   continue
  for l2 in h_d[ 2]:
   if not test((l0, l1), l2):
    continue
   # 1,2,3行 进行验证
   if test2([l0[ 0], l0[ 1], l0[ 2]
      , l1[ 0], l1[ 1], l1[ 2]
      , l2[ 0], l2[ 1], l2[ 2]
      ]) : continue   
   if test2([l0[ 3], l0[ 4], l0[ 5]
      , l1[ 3], l1[ 4], l1[ 5]
      , l2[ 3], l2[ 4], l2[ 5]
      ]) : continue   
   if test2([l0[ 6], l0[ 7], l0[ 8]
      , l1[ 6], l1[ 7], l1[ 8]
      , l2[ 6], l2[ 7], l2[ 8]
      ]) : continue   
   for l3 in h_d[ 3]:
    if not test((l0, l1, l2), l3):
     continue
    for l4 in h_d[ 4]:
     if not test((l0, l1, l2, l3), l4):
      continue
     for l5 in h_d[ 5]:
      if not test((l0, l1, l2, l3, l4), l5):
       continue
      # 4,5,6行 进行验证
      if test2([l3[ 0], l3[ 1], l3[ 2]
         , l4[ 0], l4[ 1], l4[ 2]
         , l5[ 0], l5[ 1], l5[ 2]
         ]) : continue   
      if test2([l3[ 3], l3[ 4], l3[ 5]
         , l4[ 3], l4[ 4], l4[ 5]
         , l5[ 3], l5[ 4], l5[ 5]
         ]) : continue   
      if test2([l3[ 6], l3[ 7], l3[ 8]
         , l4[ 6], l4[ 7], l4[ 8]
         , l5[ 6], l5[ 7], l5[ 8]
         ]) : continue   
      for l6 in h_d[ 6]:
       if not test((l0, l1, l2, l3, l4, l5,), l6):
        continue
       for l7 in h_d[ 7]:
        if not test((l0, l1, l2, l3, l4, l5, l6), l7):
         continue
        for l8 in h_d[ 8]:
         if not test((l0, l1, l2, l3, l4, l5, l6, l7), l8):
          continue
         # 7,8,9行 进行验证
         if test2([l6[ 0], l6[ 1], l6[ 2]
            , l7[0 ], l7[1 ], l7[2 ]
            , l8[0 ], l8[1 ], l8[2 ]
            ]) : continue   
         if test2([l6[ 3], l6[ 4], l6[ 5]
            , l7[3 ], l7[4 ], l7[5 ]
            , l8[3 ], l8[4 ], l8[5 ]
            ]) : continue   
         if test2([l6[ 6], l6[ 7], l6[ 8]
            , l7[6 ], l7[7 ], l7[8 ]
            , l8[6 ], l8[7 ], l8[8 ]
            ]) : continue   
         print l0
         print l1
         print l2
         print l3
         print l4
         print l5
         print l6
         print l7
         print l8
         sudokus.append((l0, l1, l2, l3, l4, l5, l6, l7, l8))

希望本文所述对大家的Python程序设计有所帮助。

相关文章

实用自动化运维Python脚本分享

并行发送sh命令 pbsh.py #!/usr/bin/python # -*- coding: UTF-8 -*- import paramiko import sys impor...

pytorch获取模型某一层参数名及参数值方式

1、Motivation: I wanna modify the value of some param; I wanna check the value of some param....

对numpy中的数组条件筛选功能详解

在程序设计中,时常会遇到数据的唯一化、相同、相异信息的提取等工作,在格式化的向量存储矩阵中南,numpy能够提供比较不错的快速处理功能。 1,唯一化的实现: In [63]: dat...

Python八大常见排序算法定义、实现及时间消耗效率分析

本文实例讲述了Python八大常见排序算法定义、实现及时间消耗效率分析。分享给大家供大家参考,具体如下: 昨晚上开始总结了一下常见的几种排序算法,由于之前我已经写了好几篇排序的算法的相关...

对python操作kafka写入json数据的简单demo分享

如下所示: 安装kafka支持库pip install kafka-python from kafka import KafkaProducer import json...