Python合并两个字典的常用方法与效率比较

yipeiwu_com6年前Python基础

本文实例讲述了Python合并两个字典的常用方法与效率比较。分享给大家供大家参考。具体分析如下:

下面的代码举例了5种合并两个字典的方法,并且做了个简单的性能测试

#!/usr/bin/python 
import time 
def f1(d1, d2): 
  return dict(d1, **d2) 
def f2(d1, d2): 
  return dict(d1.items() + d2.items()) 
def f3(d1, d2): 
  d = d1.copy() 
  d.update(d2) 
  return d 
def f4(d1, d2): 
  d1.update(d2) 
  return d1 
def f5(d1, d2): 
  d = dict(d1) 
  d.update(d2) 
  return d 
def f6(d1, d2): 
  return (lambda a, b: (lambda a_copy: a_copy.update(b) or a_copy)(a.copy()))(d1, d2) 
def f7(d1, d2): 
  d = {} 
  d.update(d1) 
  d.update(d2) 
  return d 
def t(f, n): 
  st = time.time() 
  for i in range(1000000): 
    dic1 = {'a':'AA','b':'BB','c':'CC'} 
    dic2 = {'A':'aa','B':'bb','C':'cc'} 
    f(dic1, dic2) 
  et = time.time() 
  print '%s cost:%s'%(n, et-st) 
t(f1, 'f1') 
t(f2, 'f2') 
t(f3, 'f3') 
t(f4, 'f4') 
t(f5, 'f5') 
t(f6, 'f6') 
t(f7, 'f7') 

除了f4方法会对字典d1造成破坏性修改之外,另外的几种方法都是把合并的结果作为新的字典返回。

下面是测试结果:

f1 cost:2.382999897 
f2 cost:4.45399999619 
f3 cost:3.02100014687 
f4 cost:1.73000001907 
f5 cost:2.3710000515 
f6 cost:2.89700007439 
f7 cost:2.35600018501 

可以看出f4最为高效,如果不需要保留原字典的话推荐使用f4方法。

希望本文所述对大家的Python程序设计有所帮助。

相关文章

Django使用模板后无法找到静态资源文件问题解决

环境配置 Django版本1.11 python版本3.6.2 前言 在编写Django网站的时候,在涉及模板方面,一些简单的例子都没有问题,但这些例子都有一个共同点,那...

python脚本当作Linux中的服务启动实现方法

脚本服务化目的: python 在 文本处理中有着广泛的应用,为了满足文本数据的获取,会每天运行一些爬虫抓取数据。但是网上买的服务器会不定时进行维护,服务器会被重启。这样我们的爬虫服务就...

Python利用IPython提高开发效率

Python利用IPython提高开发效率

一、IPython 简介 IPython 是一个交互式的 Python 解释器,而且它更加高效。 它和大多传统工作模式(编辑 -> 编译 -> 运行)不同的是, 它采用的工...

Python中的super()方法使用简介

子类里访问父类的同名属性,而又不想直接引用父类的名字,因为说不定什么时候会去修改它,所以数据还是只保留一份的好。其实呢,还有更好的理由不去直接引用父类的名字, 这时候就该super()登...

Python模块学习 re 正则表达式

re.match   re.match 尝试从字符串的开始匹配一个模式,如:下面的例子匹配第一个单词。 复制代码 代码如下: import re text = "JGood is a h...