Python实现以时间换空间的缓存替换算法

yipeiwu_com5年前Python基础

缓存是指可以进行高速数据交换的存储器,它先于内存与CPU交换数据,因此速度很快。缓存就是把一些数据暂时存放于某些地方,可能是内存,也有可能硬盘。

在使用Scrapy爬网站的时候,产生出来的附加产物,因为在Scrapy爬取的时候,CPU的运行时间紧迫度不高(访问频次太高容易被封禁),借此机会难得来上一下,让自己的内存解放一下。

算法原理:

通过将要缓存的数据用二进制展开,得到的二进制数据映射到缓存字段上,要检验是否已经缓存过,仅需要去查找对应的映射位置即可,如果全部匹配上,则已经缓存。

# 二进制就是个二叉树
# 如下面可以表示出来的数据有0, 1, 2, 3四个(两个树独立)

0 1
/ \ / \
0 1 0 1

因此对缓存的操作就转化为对二叉树的操作,添加和查找只要在二叉树上找到对应路径的node即可。

算法关键代码:

def _read_bit(self, data, position):
return (data >> position) & 0x1
def _write_bit(self, data, position, value):
return data | value << position

实际使用效果如何呢?

在和Python默认的 set 相比较,得出测试结果如下(存取整型,不定长字符串,定长字符串):

Please select test mode:4
Please enter test times:1000
====================================================================================================
TEST RESULT::
====================================================================================================
set() bytecache
items 1000 1000
add(s) 0.0 0.0209999084473
read(s) 0.0 0.0149998664856
hits 1000 1000
missed 0 0
size 32992 56
add(s/item) 0.0 2.09999084473e-05
read(s/item) 0.0 2.09999084473e-05
====================================================================================================
size (set / bytecache): 589.142857143
add time (bytecache / set): N/A
read time (bytecache / set): N/A
====================================================================================================
...test fixed length & int data end...
====================================================================================================
TEST RESULT::
====================================================================================================
set() bytecache
items 1000 1000
add(s) 0.00100016593933 6.1740000248
read(s) 0.0 7.21300005913
hits 999 999
missed 0 0
size 32992 56
add(s/item) 1.00016593933e-06 0.0061740000248
read(s/item) 0.0 0.0061740000248
====================================================================================================
size (set / bytecache): 589.142857143
add time (bytecache / set): 6172.97568534
read time (bytecache / set): N/A
====================================================================================================
...test mutative length & string data end...
====================================================================================================
TEST RESULT::
====================================================================================================
set() bytecache
items 1000 1000
add(s) 0.0 0.513999938965
read(s) 0.0 0.421000003815
hits 999 999
missed 0 0
size 32992 56
add(s/item) 0.0 0.000513999938965
read(s/item) 0.0 0.000513999938965
====================================================================================================
size (set / bytecache): 589.142857143
add time (bytecache / set): N/A
read time (bytecache / set): N/A
====================================================================================================
...test Fixed length(64) & string data end...

测试下来,内存消耗控制的比较好,一直在56字节,而是用 set 的内存虽然也不是很大,当相较于 ByteCache 来说,则大上很多。

但 ByteCache 的方式来缓存,最大的问题是当碰到非常大的随机数据时,消耗时间会比较惊人。如下面这种随机长度的字符串缓存测试结果:

Please select test mode:2
Please enter test times:2000
====================================================================================================
TEST RESULT::
====================================================================================================
set() bytecache
items 2000 2000
add(s) 0.00400018692017 31.3759999275
read(s) 0.0 44.251999855
hits 1999 1999
missed 0 0
size 131296 56
add(s/item) 2.00009346008e-06 0.0156879999638
read(s/item) 0.0 0.0156879999638
====================================================================================================
size (set / bytecache): 2344.57142857
add time (bytecache / set): 7843.63344856
read time (bytecache / set): N/A
====================================================================================================
...test mutative length & string data end...

在2000个数据中,添加消耗31s,查找消耗44s,而 set 接近于0,单条数据也需要16ms(均值)才能完成读/写操作。

不过,正如开头说的,在紧迫度不是很高的Scrapy中,这个时间并不会太过于窘迫,更何况在Scrapy中,一般是用来缓存哈希后的数据,这些数据的一个重要特性是定长,定长在本缓存算法中还是表现不错的,在64位长度的时候,均值才0.5ms。而与此同时倒是能在大量缓存的时候,释放出比较客观的内存。

如果有更好的缓存算法能让速度在上新台阶,也是无比期待的。。。

总结:

1. 此方法的目标是用时间换取空间,切勿在时间紧迫度高的地方使用

2. 非常适用于大量定长,且数据本身比较小的情况下使用

3. 接2,非常不建议在大量不定长的数据,而且数据本身比较大的情况下使用

以上内容是小编给大家介绍的Python实现以时间换空间的缓存替换算法,希望对大家有所帮助!

相关文章

基于Python闭包及其作用域详解

基于Python闭包及其作用域详解

关于Python作用域的知识在python作用域有相应的笔记,这个笔记是关于Python闭包及其作用域的详细的笔记 如果在一个内部函数里,对一个外部作用域(但不是全局作用域)的变量进行引...

详解Django+uwsgi+Nginx上线最佳实战

什么是uwsgi? uWSGI是一个Web服务器,它实现了WSGI协议、uwsgi、http等协议。Nginx中HttpUwsgiModule的作用是与uWSGI服务器进行交换。WSG...

Python 实现数据库更新脚本的生成方法

我在工作的时候,在测试环境下使用的数据库跟生产环境的数据库不一致,当我们的测试环境下的数据库完成测试准备更新到生产环境上的数据库时候,需要准备更新脚本,真是一不小心没记下来就会忘了改了哪...

详解pandas安装若干异常及解决方案总结

详解pandas安装若干异常及解决方案总结

在为Python安装第三方工具pandas出现了若干问题。 当我在cmd命令环境输入pip install pandas准备安装pandas时,出现了错误提示:Microsoft Vis...

关于Python形参打包与解包小技巧分享

Python中的函数调用与c++不同的是将this指针直接作为self当作第一个形参进行处理,从而将静态函数与实例方法的调用形式统一了起来。在实际编程过程中,可以通过传递函数的地址、函数...