Python处理JSON数据并生成条形图

yipeiwu_com6年前Python基础

一、JSON 数据准备

首先准备一份 JSON 数据,这份数据共有 3560 条内容,每条内容结构如下:

本示例主要是以 tz(timezone 时区) 这一字段的值,分析这份数据里时区的分布情况。

二、将 JSON 数据转换成 Python 字典

代码如下:

三、统计 tz 值分布情况,以“时区:总数”的形式生成统计结果

要想达到这一目的,需要先将 records 转换成 DataFrameDataFrame Pandas 里最重要的数据结构,它可以将数据以表格的形式表示;然后用 value_counts() 方法汇总:

四、根据统计结果生成条形图

生成条形图之前,为了数据的完整,可以给结果中缺失的时区添加一个值(这里用Missing表示),而每条时区内容里缺失的值也需要添加一个未知的值(这里用Unknown表示):

然后使用 plot() 方法既可生成条形图:

到这里就是一个完整的处理 JSON 数据生成统计结果和条形图的例子;不过还可以对这份统计结果进行进一步的处理,以得到更加详细的结果。

每条数据里还有一个 agent 值,即浏览器的 USER_AGENT 信息,通过这一信息可以得知所使用的操作系统,所以对上一步生成的统计结果还可以按操作系统的不同加以区分。

agent 值:

五、将条形图以操作系统(Windows/非Windows)加以区分

不是所有的数据都有 a 这个字段,首先过滤掉没有 agent 值的数据; 然后根据时区和操作系统列表对数据分组,然后 对分组结果进行计数:

最后选择出现次数最多的10个时区的数据 生成一张条形图:

这样就得到了以不同操作系统加以区分的条形图统计结果:

以上就是Python处理JSON数据并生成条形图的全部内容,希望本文对大家学习Python和JSON都能有所帮助。

相关文章

基于python requests库中的代理实例讲解

直接上代码: #request代理(proxy) """ 1.启动代理服务器Heroku,相当于aliyun 2.在主机1080端口启动Socks 服务 3.将请求转发到1080端口...

python 去除二维数组/二维列表中的重复行方法

之前提到去除一维数组中的重复元素用unique()函数,如果要去除二维数组中的重复行该怎么操作呢? import numpy as np arr = np.array([[1, 2]...

Python多进程并发与多线程并发编程实例总结

本文实例总结了Python多进程并发与多线程并发。分享给大家供大家参考,具体如下: 这里对python支持的几种并发方式进行简单的总结。 Python支持的并发分为多线程并发与多进程并发...

Python实现测试磁盘性能的方法

本文实例讲述了Python实现测试磁盘性能的方法。分享给大家供大家参考。具体如下: 该代码做了如下工作: create 300000 files (512B to 1536B) with...

浅谈django开发者模式中的autoreload是如何实现的

在开发django应用的过程中,使用开发者模式启动服务是特别方便的一件事,只需要 python manage.py runserver 就可以运行服务,并且提供了非常人性化的autore...